TECHNOLOGY FACTSHEET

	P GAS RECYCLING BL										CCS
Date of factsheet	7-9-2020										
Author	Kira West										
Sector	Industry: Iron and steel										
	All										
ETS / Non-ETS	ETS Emission roduction										
Type of Technology	Emission reduction The most common steelmaking route is called blast furnace-basic oxygen furnace (BF-BOF) steelmaking, which was invented in 1948 and now accounts for about 70% of global crude										
Description	The most common steelmaking route is called blast furnace-basic oxygen furnace (BF-BOF) steelmaking, which was invented in 1948 and now accounts for about 70% of global crude steel output (World Steel 2019). This process is also called basic oxygen steelmaking (BOS) or oxygen converter steelmaking (OCS). The top gas recycling blast furnace (TGR-BF) (also known as an oxygen blast furnace or ULCOS blast furnace) replaces a conventional blast furnace in order to reduce CO2 emissions from the steelmaking process.										
											e (in the form th impurities to 300 degrees C oplied by coal oxygen inal product st impurities be purchased ead of air or p gases There are se, cost, and I BOF. There
RL level 2020	TRL 6 The top gas recycling blast furnac demonstration was planned at th yet been planned, so the technol	e ArcelorMittal b	last furnaces in	Florange, Fran	ce (1.5 kt/y sca		•		-	•	
TECHNICAL DIMENSIONS		-07									
	Functional Unit	:				V	alue and Rang	je			
Capacity	Mton crude stee	1		Min			-			Мах	
	NL	Mton steel		Current			2030			2050	
Potential				-			6.81			-	Г
	NL	%	Min	-	Мах	6.81	-	6.81	Min	-	Max
Market share	INL	70	Min	-	Мах	Min	-	Мах	Min	-	Мах
Capacity utlization factor			IVIIII		IVIUX	IVIIII	_	IVIUX	0.87		IVIUX
Full-load running hours per year	<u> </u>										
- · · ·	Mton crude										
Unit of Activity	steel/year										
echnical lifetime (years)											
Progress ratio									25.00		
									25.00		
Hourly profile	No Potential is given as total product	tion of crude stee	l in the Netherla	ands as of 2018	8. Capacity utili	zation factor is	derived from 2			vas available to j	provide a
Hourly profile Explanation		tion of crude stee	l in the Netherla	ands as of 2018	8. Capacity utili	zation factor is	derived from 2			vas available to j	provide a
Hourly profile Explanation	Potential is given as total product typical capacity.	tion of crude stee	l in the Netherla	ands as of 2018	8. Capacity utili	zation factor is	derived from 2			vas available to p	provide a
Hourly profile Explanation	Potential is given as total product typical capacity. 2015		l in the Netherla		8. Capacity utili	zation factor is					provide a
Hourly profile Explanation COSTS /ear of Euro	Potential is given as total product typical capacity. 2015 Euro per Functional	Unit	l in the Netherla	ands as of 2018 Current	3. Capacity utili	zation factor is	2030			vas available to p 2050	orovide a
Hourly profile Explanation COSTS Year of Euro	Potential is given as total product typical capacity. 2015	Unit	l in the Netherla		3. Capacity utili	zation factor is				2050	provide a Max
Hourly profile Explanation COSTS Year of Euro nvestment costs	Potential is given as total product typical capacity. 2015 Euro per Functional	Unit eel	Min	Current - - -	Max	389.20	2030 779.86 – -	018 data. Insuf 938.40	ficient data w	2050 - - -	Max
Hourly profile Explanation COSTS Year of Euro nvestment costs Other costs per year	Potential is given as total product typical capacity. 2015 Euro per Functional mln. € / Mton crude stee mln. € / Mton crude stee	Unit eel eel					2030 779.86 - - -	018 data. Insul	fficient data w	2050 - -	
Hourly profile Explanation COSTS Year of Euro Investment costs Other costs per year Fixed operational costs per year	Potential is given as total product typical capacity. 2015 Euro per Functional mln. € / Mton crude ste	Unit eel eel	Min	Current - - -	Max	389.20	2030 779.86 – -	018 data. Insuf 938.40	ficient data w	2050 - - -	Max
Hourly profile Explanation COSTS Year of Euro nvestment costs Other costs per year Fixed operational costs per year (excl. fuel costs)	Potential is given as total product typical capacity. 2015 Euro per Functional mln. € / Mton crude stee mln. € / Mton crude stee	Unit eel eel	Min Min Min	Current - - - - -	Max Max Max	389.20 <i>Min</i> 42.43	2030 779.86 - - - 65.03	018 data. Insul 938.40 <i>Max</i> 65.03	ficient data w Min Min Min	2050 - - - - - -	Max Max Max
Hourly profile Explanation COSTS Vear of Euro Investment costs Other costs per year Exced operational costs per year excl. fuel costs)	Potential is given as total product typical capacity. 2015 Euro per Functional mln. € / Mton crude steements	Unit eel eel eel	Min Min Min Min	Current - - - - - - - - - - - -	Max Max Max Max	389.20 Min 42.43 Min	2030 779.86 – – – 65.03 – – –	018 data. Insut 938.40 <i>Max</i> 65.03 <i>Max</i>	fficient data w Min Min Min Min Min	2050 - - - - - - - - - - - - -	Max Max Max Max
Hourly profile Explanation COSTS Year of Euro nvestment costs Other costs per year Fixed operational costs per year (excl. fuel costs) Variable costs per year	Potential is given as total product typical capacity. 2015 Euro per Functional mln. € / Mton crude steements mln. € / Mton crude steements mln. € / Mton crude steements	Unit eel eel eel eel construction; retr rap and flux) range purchased oxyge 13 assumes impor sts, without speci	Min Min Min Min ofits to existing e from €165 mil n is considered rted iron ore pe fying a discount	Current - - - - - - BF-BOF steel r llion - €239 mill in variable cost llets, while oth t rate or equipr	Max Max Max Max nills would hav ion per million cs. Differences er sources inclu-	389.20 Min 42.43 Min e a lower CAPE2 tonnes of crude in assumptions ude pelletizing of The overnight ca	2030 779.86 – – – 65.03 – – K. Fixed OPEX is e steel. In IEAG about on-site (within the plan apital costs fro	018 data. Insut 938.40 <u>Max</u> 65.03 <u>Max</u> s given as mln = HG 2013, oxyg CHP and use of t boundary. Eu	fficient data w Min Min Min € per Mt/yr st en is generate process gases ropean Comm	2050 - - - - - - - - - eel capacity. Va eel capacity. Va ed on site via an s accounts for so hission (2016) pr	Max Max Max Max riable costs air separation ome of the rovides
Hourly profile Explanation COSTS Year of Euro nvestment costs Other costs per year Fixed operational costs per year (excl. fuel costs) Variable costs per year	Potential is given as total product typical capacity. 2015 Euro per Functional mln. € / Mton crude steement mln. € / Mton crude steement </td <td>Unit eel eel eel eel construction; retr rap and flux) range purchased oxyge 13 assumes impor sts, without speci</td> <td>Min Min Min Min ofits to existing e from €165 mil n is considered rted iron ore pe fying a discount</td> <td>Current - - - - - - BF-BOF steel r llion - €239 mill in variable cost llets, while oth t rate or equipr</td> <td>Max Max Max Max nills would hav ion per million cs. Differences er sources inclu-</td> <td>389.20 Min 42.43 Min e a lower CAPE2 tonnes of crude in assumptions ude pelletizing of The overnight ca</td> <td>2030 779.86 – – – 65.03 – – K. Fixed OPEX is e steel. In IEAG about on-site (within the plan apital costs fro</td> <td>018 data. Insut 938.40 <u>Max</u> 65.03 <u>Max</u> s given as mln = HG 2013, oxyg CHP and use of t boundary. Eu</td> <td>fficient data w Min Min Min € per Mt/yr st en is generate process gases ropean Comm</td> <td>2050 - - - - - - - - - eel capacity. Va eel capacity. Va ed on site via an s accounts for so hission (2016) pr</td> <td>Max Max Max Max riable costs air separation ome of the rovides</td>	Unit eel eel eel eel construction; retr rap and flux) range purchased oxyge 13 assumes impor sts, without speci	Min Min Min Min ofits to existing e from €165 mil n is considered rted iron ore pe fying a discount	Current - - - - - - BF-BOF steel r llion - €239 mill in variable cost llets, while oth t rate or equipr	Max Max Max Max nills would hav ion per million cs. Differences er sources inclu-	389.20 Min 42.43 Min e a lower CAPE2 tonnes of crude in assumptions ude pelletizing of The overnight ca	2030 779.86 – – – 65.03 – – K. Fixed OPEX is e steel. In IEAG about on-site (within the plan apital costs fro	018 data. Insut 938.40 <u>Max</u> 65.03 <u>Max</u> s given as mln = HG 2013, oxyg CHP and use of t boundary. Eu	fficient data w Min Min Min € per Mt/yr st en is generate process gases ropean Comm	2050 - - - - - - - - - eel capacity. Va eel capacity. Va ed on site via an s accounts for so hission (2016) pr	Max Max Max Max riable costs air separation ome of the rovides
Hourly profile Explanation COSTS Vear of Euro Investment costs Other costs per year Eixed operational costs per year excl. fuel costs) Variable costs per year	Potential is given as total product typical capacity. 2015 Euro per Functional mln. € / Mton crude steement mln. € / Mton crude steement </td <td>Unit eel eel eel eel construction; retr rap and flux) range purchased oxyge 13 assumes impor sts, without speci</td> <td>Min Min Min Min ofits to existing e from €165 mil n is considered rted iron ore pe fying a discount</td> <td>Current - - - - - - BF-BOF steel r llion - €239 mill in variable cost llets, while oth t rate or equipr</td> <td>Max Max Max Max nills would hav ion per million cs. Differences er sources inclu-</td> <td>389.20 Min 42.43 Min e a lower CAPE2 tonnes of crude in assumptions ude pelletizing of The overnight ca</td> <td>2030 779.86 – – – 65.03 – – K. Fixed OPEX is e steel. In IEAG about on-site (within the plan apital costs fro</td> <td>018 data. Insut 938.40 <u>Max</u> 65.03 <u>Max</u> s given as mln = HG 2013, oxyg CHP and use of t boundary. Eu</td> <td>fficient data w Min Min Min € per Mt/yr st en is generate process gases ropean Comm</td> <td>2050 - - - - - - - - - eel capacity. Va eel capacity. Va ed on site via an s accounts for so hission (2016) pr</td> <td>Max Max Max Max riable costs air separation ome of the rovides</td>	Unit eel eel eel eel construction; retr rap and flux) range purchased oxyge 13 assumes impor sts, without speci	Min Min Min Min ofits to existing e from €165 mil n is considered rted iron ore pe fying a discount	Current - - - - - - BF-BOF steel r llion - €239 mill in variable cost llets, while oth t rate or equipr	Max Max Max Max nills would hav ion per million cs. Differences er sources inclu-	389.20 Min 42.43 Min e a lower CAPE2 tonnes of crude in assumptions ude pelletizing of The overnight ca	2030 779.86 – – – 65.03 – – K. Fixed OPEX is e steel. In IEAG about on-site (within the plan apital costs fro	018 data. Insut 938.40 <u>Max</u> 65.03 <u>Max</u> s given as mln = HG 2013, oxyg CHP and use of t boundary. Eu	fficient data w Min Min Min € per Mt/yr st en is generate process gases ropean Comm	2050 - - - - - - - - - eel capacity. Va eel capacity. Va ed on site via an s accounts for so hission (2016) pr	Max Max Max Max riable costs air separation ome of the rovides
Hourly profile Explanation COSTS Year of Euro Investment costs Other costs per year Fixed operational costs per year (excl. fuel costs) Variable costs per year	Potential is given as total product typical capacity. 2015 2015 Image:	Unit eel eel eel construction; retr rap and flux) rango purchased oxyge 13 assumes impor sts, without speci e of discount rate Unit	Min Min Min Min ofits to existing e from €165 mil n is considered rted iron ore pe fying a discount es of 5%-10% an	Current - - - - - BF-BOF steel r lion - €239 mill in variable cost llets, while oth t rate or equipr id equipment e	Max Max Max Max nills would hav ion per million is. Differences er sources inclu- nent lifetime. The conomic lifetime.	389.20 Min 42.43 Min e a lower CAPE tonnes of crude in assumptions ude pelletizing v The overnight ca nes of 10-20 yea	2030 779.86 – – – 65.03 – – X. Fixed OPEX is e steel. In IEAG about on-site (within the plan apital costs fro ars.	018 data. Insut 938.40 <u>Max</u> 65.03 <u>Max</u> s given as mln = GHG 2013, oxyg CHP and use of t boundary. Eu m this source g	ficient data w Min Min Min € per Mt/yr st en is generate process gases ropean Comm tiven in this fa	2050 - - - - - - - eel capacity. Va eel capacity. Va ed on site via an s accounts for so hission (2016) pr ctsheet were de	Max Max Max Max riable costs air separation ome of the rovides erived from the
Hourly profile Explanation COSTS Vear of Euro Investment costs Other costs per year Eixed operational costs per year excl. fuel costs) Variable costs per year	Potential is given as total product typical capacity. 2015 2015 Image:	Unit eel eel eel construction; retr rap and flux) range purchased oxyge 13 assumes impor sts, without speci e of discount rate	Min Min Min Min ofits to existing e from €165 mil n is considered rted iron ore pe fying a discount	Current - - - - - BF-BOF steel r lion - €239 mill in variable cost llets, while oth t rate or equipr d equipment e Current	Max Max Max Max nills would hav ion per million cs. Differences er sources inclu-	389.20 Min 42.43 Min e a lower CAPE2 tonnes of crude in assumptions ude pelletizing of The overnight ca	2030 779.86 – – – 65.03 – – – K. Fixed OPEX is e steel. In IEAG about on-site (within the plan apoital costs fro ars. 2030 15.87 –	018 data. Insut 938.40 <u>Max</u> 65.03 <u>Max</u> s given as mln = HG 2013, oxyg CHP and use of t boundary. Eu	fficient data w Min Min Min € per Mt/yr st en is generate process gases ropean Comm	2050 - - - - - - - eel capacity. Va ed on site via an s accounts for so hission (2016) pr ctsheet were de 2050 - - - - - - - - - - - - -	Max Max Max Max riable costs air separation ome of the rovides
Hourly profile Explanation COSTS Year of Euro Investment costs Other costs per year Fixed operational costs per year (excl. fuel costs) Variable costs per year Costs explanation	Potential is given as total product typical capacity. 2015 2015 and the second	Unit eel eel eel construction; retr rap and flux) rango purchased oxyge 13 assumes impor sts, without speci e of discount rate Unit	Min Min Min Min ofits to existing e from €165 mil n is considered rted iron ore pe fying a discount es of 5%-10% an Min	Current - - - - - - BF-BOF steel r llion - €239 mill in variable cost llets, while oth t rate or equipr d equipment e Current - - - - - - - - -	Max Max Max Max Max Max Max Differences er sources inclu- nent lifetime. The conomic lifetime.	389.20 Min 42.43 Min e a lower CAPE tonnes of crude in assumptions ude pelletizing v The overnight ca nes of 10-20 yea 11.28	2030 779.86 – – – 65.03 – – 3 5.03 – – 4 5.03 – – 5 5.03 – – 5 5.03 – – 5 5.03 – – 5 5.03 – – 5 5.03 – – 5 5.03 – – 5 5.03 – – 5 5 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	018 data. Insul 938.40 <u>Max</u> 65.03 <u>Max</u> s given as mln = GHG 2013, oxyg CHP and use of t boundary. Eu m this source g 15.87	ficient data w <i>Min</i> <i>Min</i> <i>Min</i> <i>Min</i> <i>C</i> process gases ropean Comm tiven in this fa <i>Min</i> <i>Min</i>	2050 - - - - - - - - - - - - -	Max Max Max Max riable costs air separation ome of the rovides erived from the Max
Progress ratio Hourly profile Explanation COSTS Year of Euro Investment costs Other costs per year Fixed operational costs per year (excl. fuel costs) Variable costs per year Costs explanation ENERGY IN- AND OUTPUTS Energy carriers (per unit of main output)	Potential is given as total product typical capacity. 2015 2015 and the second	Unit eel eel eel construction; retr rap and flux) range purchased oxyge 13 assumes impor sts, without speci e of discount rate Unit PJ PJ	Min Min Min Min ofits to existing e from €165 mil n is considered rted iron ore pe fying a discount es of 5%-10% an	Current - - - - - BF-BOF steel r llion - €239 mill in variable cost llets, while oth t rate or equipr d equipment e Current -	Max Max Max Max nills would hav ion per million is. Differences er sources inclu- nent lifetime. The conomic lifetime.	389.20 Min 42.43 Min e a lower CAPE tonnes of crude in assumptions ude pelletizing v The overnight ca nes of 10-20 yea	2030 779.86 – – – 65.03 – – – K. Fixed OPEX is e steel. In IEAG about on-site (within the plan apoital costs fro ars. 2030 15.87 – 1.27 –	018 data. Insuf 938.40 <u>Max</u> 65.03 <u>Max</u> s given as mln = GHG 2013, oxyg CHP and use of t boundary. Eu m this source g	ficient data w Min Min Min € per Mt/yr st en is generate process gases ropean Comm tiven in this fa	2050 - - - - - - - eel capacity. Va ed on site via an s accounts for so hission (2016) pr ctsheet were de 2050 - - - - - - - - - - - - -	Max Max Max Max riable costs air separation ome of the rovides erived from the
Hourly profile Explanation COSTS Year of Euro Investment costs Other costs per year Fixed operational costs per year (excl. fuel costs) Variable costs per year Costs explanation	Potential is given as total product typical capacity. 2015 2015 and the second	Unit eel eel eel construction; retr rap and flux) range purchased oxyge 13 assumes impor sts, without speci e of discount rate Unit PJ	Min Min Min Min ofits to existing e from €165 mil n is considered rted iron ore pe fying a discount es of 5%-10% an Min	Current - - - - - BF-BOF steel r lion - €239 mill in variable cost llets, while oth t rate or equipr d equipment e Current - - - - - - - - -	Max Max Max Max Max Max Max Differences er sources inclu- nent lifetime. The conomic lifetime.	389.20 Min 42.43 Min e a lower CAPE tonnes of crude in assumptions ude pelletizing v The overnight ca nes of 10-20 yea 11.28	2030 779.86 – – – 65.03 – – 3 5.03 – – 4 5.03 – – 5 5.03 – – 5 5.03 – – 5 5.03 – – 5 5.03 – – 5 5.03 – – 5 5.03 – – 5 5.03 – – 5 5 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	018 data. Insul 938.40 <u>Max</u> 65.03 <u>Max</u> s given as mln = GHG 2013, oxyg CHP and use of t boundary. Eu m this source g 15.87	ficient data w <i>Min</i> <i>Min</i> <i>Min</i> <i>Min</i> <i>C</i> process gases ropean Comm tiven in this fa <i>Min</i> <i>Min</i>	2050	Max Max Max Max riable costs air separation ome of the rovides erived from the Max
Hourly profile Explanation COSTS Year of Euro Investment costs Other costs per year Fixed operational costs per year (excl. fuel costs) Variable costs per year Costs explanation	Potential is given as total product typical capacity. 2015 2015 and the second	Unit eel eel eel construction; retr rap and flux) range purchased oxyge 13 assumes impor sts, without speci e of discount rate Unit PJ PJ	Min Min Min Min ofits to existing e from €165 mil n is considered rted iron ore pe fying a discount es of 5%-10% an Min Min	Current - - - - - - - BF-BOF steel r llion - €239 mill in variable cosi llets, while oth t rate or equipr in variable cosi llets, while oth t rate or equipr t rate or equipr d equipment e - - - - - - - - -	Max Max Max Max Max Max Max Max Max Max	389.20 Min 42.43 Min e a lower CAPE2 tonnes of crude in assumptions ude pelletizing v The overnight ca nes of 10-20 yea 11.28 0.91	2030 779.86 - - - 65.03 - - 5.03 - - (4. Fixed OPEX is e steel. In IEAG about on-site (within the plan apital costs from apital costs from apital costs from and 15.87 - 1.27 - 1.88	018 data. Insuf 938.40 <u>Max</u> 65.03 <u>Max</u> s given as mln = GHG 2013, oxyg CHP and use of t boundary. Eu m this source g 15.87 1.69	ficient data w <i>Min</i> <i>Min</i> <i>Min</i> € per Mt/yr st en is generate process gases ropean Comm given in this fa <i>Min</i> <i>Min</i> <i>Min</i>	2050 - - - - - - - - - - - - -	Max Max Max Max riable costs air separation ome of the rovides erived from the Max Max

	The energy flows above are ne	energy inputs to the	steelmaking r	process with h	oundaries (as s	necified above) f	rom coking a	nd sintering to	tanning liquid	crude steel fro	om the basic
	The energy flows above are net energy inputs to the steelmaking process with boundaries (as specified above) from coking and sintering to tapping liquid crude steel from the basic oxygen furnace; intermediate energy flows are not shown. Coal is processed into coke in a coking plant, which is injected into the blast furnace.										
Energy in- and Outputs explanation											
	Energy-rich off-gases from the blast furnace are stripped of CO2 and recycled into the blast furnace (about 90% to blast furnace, and the remaining 10% combusted for pre-heating). Some of the off-gases from the coke oven and all of the basic oxygen furnace are directly combusted as energy sources in the process. The negative values represent surplus energy carriers beyond what is needed to produce crude steel. These can be utilised in various ways either within the steel sector or in other nearby industrial sites. For IEAGHG (2013), an on-										
	site NGCC power plant, sized to meet on-site electricity demand, is assumed, and thus no electricity import or export occurs in this case (this accounts for the larger natural gas input according to this source). Here values have been adjusted to account for BOFG/BFG exported to the power plant, exclude NG for the power plant, and account for electricity generated. The utility assumptions in European Commission (2016) are unspecified. In each source, coke oven gas is considered to be fully utilized on-site, with no surplus available for export. For Keys, van Hout and Daniels, the BOF gas is sent to a CHP unit, which is excluded from the boundary here. However, this means that not all heat demand is met within the energy values given above, some additional heat is "imported" from the CHP.The values from IEAGHG 2013 are thus not directly comparable with Keys, van Hout and Daniels.										
	Energy needs for CO2 capture (2016) also does not specify ou	•			and Keys, Van H	Hout and Daniels	(2019), but n	ot European Co	ommission (201	16). European	Commission
MATERIAL FLOWS (OPTIONAL)											
	Material	Unit	Current			2030				2050	
Material flows	Iron ore	Mt -	Min	-	Мах	1.24	1.24 -	1.31	Min	-	Мах
	Crude steel	Mt	Min	-	Мах	-1.00	-1.00	-1.00	Min	-	Max
	input to the basic oxygen furna	ace where crude steel	is produced. F			•	-				inally forms the nes in Keys, Van
Material flows explanation	Hout and Daniels (2019). Oxyg	en is produced on-site	•	Pellets are ass	umed to be imp	orted from Brazi	il in IEAGHG (2	2013), and to b	e produced fro		
Material flows explanation EMISSIONS (Non-fuel/energy-related	Hout and Daniels (2019). Oxyg emissions or emissions reduction	en is produced on-site	•	Pellets are ass eparation uni	umed to be imp	orted from Brazi	il in IEAGHG (2 SU are includ	2013), and to b	e produced fro	om iron ore fir	
	Hout and Daniels (2019). Oxyg	en is produced on-site	•	Pellets are ass	umed to be imp	orted from Brazi	il in IEAGHG (2	2013), and to b	e produced fro		
	Hout and Daniels (2019). Oxyg emissions or emissions reduction Substance	en is produced on-site ns (e.g. CCS) Unit	•	Pellets are ass eparation uni	umed to be imp	orted from Brazi	il in IEAGHG (2 SU are includ 2030	2013), and to b	e produced fro	om iron ore fir	
	Hout and Daniels (2019). Oxyg emissions or emissions reduction Substance	en is produced on-site ns (e.g. CCS) Unit	e using an air s	Pellets are ass eparation uni Current - -	umed to be imp t; energy needs	oorted from Brazi	il in IEAGHG (2 SU are includ 2030 -0.78	2013), and to b led in this facts	e produced fro	om iron ore fir	nes in Keys, Van
EMISSIONS (Non-fuel/energy-related	Hout and Daniels (2019). Oxyg emissions or emissions reduction Substance	en is produced on-site ns (e.g. CCS) Unit	e using an air so Min	Pellets are ass eparation uni Current - - - - - - - - -	t; energy needs	oorted from Brazi to operate the A -0.78	il in IEAGHG (2 SU are includ 2030 -0.78 -	2013), and to b led in this facts -0.70	Min	om iron ore fir	mes in Keys, Van
EMISSIONS (Non-fuel/energy-related	Hout and Daniels (2019). Oxyg emissions or emissions reduction Substance	en is produced on-site ns (e.g. CCS) Unit	Min Min	Pellets are ass eparation uni Current - - - - - - -	t; energy needs	oorted from Brazi to operate the A -0.78 Min	il in IEAGHG (2 SU are includ 2030 -0.78 - - - - -	2013), and to b led in this facts -0.70 Max	Min Min	om iron ore fir	Max
EMISSIONS (Non-fuel/energy-related	Hout and Daniels (2019). Oxyg emissions or emissions reduction Substance	rude steel are capture rVPSA + cryogenic fla specified in the availa	Min Min Min Min Min Min Min ed from the bla sh capture. Ne ble literature,	Pellets are ass eparation uni Current - - - - - - - ast furnace to et emitted CO likely because	Max	oorted from Brazi to operate the A -0.78 Min Min Min apture options a h process and co experience with	il in IEAGHG (2 SU are includ 2030 -0.78 - - - - - - - - - - - - - - - - - - -	2013), and to b led in this facts -0.70 <i>Max</i> <i>Max</i> ources used he ated CO2 emiss	Min Min Min Min Min re consider eit sions) is about (2050 - - - - - - - - - - - - - - - - - -	Max Max Max Max Max Max Max Max Max Max
EMISSIONS (Non-fuel/energy-related	Hout and Daniels (2019). Oxyg emissions or emissions reduction Substance CO2 captured CO2 captured About ~0.7-0.8 MtCO2/Mton of capture with amine solvents of steel. Other emissions are not	rude steel are capture rVPSA + cryogenic fla specified in the availa	Min Min Min Min Min Min Min ed from the bla sh capture. Ne ble literature,	Pellets are ass eparation uni Current - - - - - - - ast furnace to et emitted CO likely because	Max	oorted from Brazi to operate the A -0.78 Min Min Min apture options a h process and co experience with	il in IEAGHG (2 SU are includ 2030 -0.78 - - - - - - - - - - - - - - - - - - -	2013), and to b led in this facts -0.70 <i>Max</i> <i>Max</i> ources used he ated CO2 emiss	Min Min Min Min Min re consider eit sions) is about (2050 - - - - - - - - - - - - - - - - - -	Max Max Max Max Max Max Max Max Max Max
EMISSIONS (Non-fuel/energy-related Emissions Emissions explanation	Hout and Daniels (2019). Oxyg emissions or emissions reduction Substance CO2 captured CO2 captured About ~0.7-0.8 MtCO2/Mton of capture with amine solvents of steel. Other emissions are not	rude steel are capture rVPSA + cryogenic fla specified in the availa	Min Min Min Min Min Min Min ed from the bla sh capture. Ne ble literature,	Pellets are ass eparation uni Current - - - - - - - ast furnace to et emitted CO likely because	Max	oorted from Brazi to operate the A -0.78 Min Min Min apture options a h process and co experience with	il in IEAGHG (2 SU are includ 2030 -0.78 - - - - - - - - - - - - - - - - - - -	2013), and to b led in this facts -0.70 <i>Max</i> <i>Max</i> ources used he ated CO2 emiss	Min Min Min Min Min re consider eit sions) is about (2050 - - - - - - - - - - - - - - - - - -	Max Max Max Max Max Max Max Max Max Max
EMISSIONS (Non-fuel/energy-related Emissions Emissions explanation OTHER	Hout and Daniels (2019). Oxyg emissions or emissions reduction Substance CO2 captured About ~0.7-0.8 MtCO2/Mton of capture with amine solvents of steel. Other emissions are not reduced compared to convent	rude steel are capture rVPSA + cryogenic fla specified in the availa	Min Min Min Min Min Min Min ed from the bla sh capture. Ne ble literature,	Pellets are ass eparation uni Current - - - - - - - - - - - - -	Max	oorted from Brazi to operate the A -0.78 Min Min Min apture options a h process and co experience with	I in IEAGHG (2 SU are includ 2030 -0.78 - - - - - - - - - - - - - - - - - - -	2013), and to b led in this facts -0.70 <i>Max</i> <i>Max</i> ources used he ated CO2 emiss	Min Min Min Min Min re consider eit sions) is about (2050 - - - - - - - - - - - - - - - - - -	Max Max Max Max Max Max Max Max Max Max
EMISSIONS (Non-fuel/energy-related Emissions Emissions explanation OTHER Parameter	Hout and Daniels (2019). Oxyg emissions or emissions reduction Substance CO2 captured CO2 captured About ~0.7-0.8 MtCO2/Mton of capture with amine solvents of steel. Other emissions are not reduced compared to convent Unit	rude steel are capture rVPSA + cryogenic fla specified in the availa	Min Min Min Min Min Min Min Min ed from the bla sh capture. Ne ble literature, king, due to th	Pellets are ass eparation uni Current - - - - - - - ast furnace to e use of pure Current - - - - - - - - - - - - -	iumed to be imp t; energy needs Max Max Max Max p gas. Several c 2 (including both e of the limited oxygen in the b	-0.78 Min Min Min Min Apture options a h process and co experience with last furnace, rath	2030 -0.78 - - - - - - - - - - - - - - - - - - -	2013), and to b led in this facts -0.70 Max Max Max ources used he ated CO2 emiss gy; however, n	Min Min Min Min Min re consider eitl sions) is about (itrogen emissio	2050 - - - - - - - - - - - - - - - - - -	Max Max Max Max Max Max Max Max Max Max

Heat	PJ									
		Min	-	Max	-	-	0.22	Min	-	Max
Explanation	Flux and scrap consumption can vary significa	ntly depending on	the final produc	t specifications	. Fluxes include	e limestone, qu	artzite, olivine,	CaC2 powder	, and burnt dolo	omite.
REFERENCES AND SOURCES										
IEAGHG (2013), "Iron and Steel CCS St	udy (Techno-economics Integrated Steel Mill)," ht	tps://ieaghg.org/d	ocs/General_Do	ocs/Reports/20	13-04.pdf.					
A. Keys, M. van Hout, and B. Daniëls (2 industry_3723.pdf.	2019), "Decarbonisation Options for the Dutch Ste	el Industry," MIDD	EN report, http:	s://www.pbl.nl,	/sites/default/f	iles/downloads	s/pbl-2019-dec	arbonisation-o	ptions-for-the-o	dutch-steel
European Commission (2016), "Iron pr	oduction by electrochemical reduction of its oxide	e for high CO2 miti	gation (IERO)."							
Hooey et al. (2013), "Techno-economi	c study of an integrated steelworks equipped with	n oxygen blast furn	ace and CO2 ca	pture."						
World Steel (2019), "Steel Statistical Y	earbook 2019 Concise version", downloaded from	i: https://www.woi	rldsteel.org/en/	dam/jcr:7aa2a9	95d-448d-4c56-	b62b-b2457f0	67cd9/SSY19%2	2520concise%2	2520version.pdf	
ETSAP (2010), "Technology Brief I02: Iı	ron and Steel", https://iea-etsap.org/E-TechDS/PD	0F/I02-Iron&Steel-0	GS-AD-gct.pdf.							
Boston Consulting Group (2013), "Stee	el's Contribution to a Low-Carbon Europe 2050," h	ttps://www.bcg.cc	m/publications	/2013/metals-r	nining-environr	nent-steels-co	ntribution-low-	carbon-europe	e-2050.aspx.	
N. Pardo, J. Moya and K. Vatopoulos (2 01aa75ed71a1.0001.03/DOC_1.	2012), "Prospective Scenarios on Energy Efficiency	and CO2 Emission	s in the EU Iron	& Steel Industr	y." JRC. http://	publications.e	uropa.eu/resou	irce/cellar/698	93c31-b50a-11	e5-8d3c-
Netherlands Environmental Assessme	nt Agency (2009), "Greenhouse Gas Emissions in t	he Netherlands 19	90-2007."							
Arasto et al. (2014), "Oxygen blast furr	nace with CO2 capture and storage at an integrate	ed steel mill—Part	I: Technical con	cept analysis,"	https://www.sc	iencedirect.co	m/science/arti	cle/pii/S17505	83614002527.	

-

-

-

Max

295.59

295.59

Min

-

-

230.01

-

-

-

Max

Bergman et al. (2008), "Oxygen blast furnace process for Swedish conditions", https://www.lkab.com/en/SysSiteAssets/documents/kund/2008-oxygen-blast-furnace-process-for-swedish-conditions.pdf.

Min

m^3

РJ

Oxygen

Heat