TECHNOLOGY FACTSHEET

METHANE DRODUCTION													
Date of factsheet	20-12-2019 Remko Detz												
Sector	Industry: Chemics												
ETS / Non-ETS	ETS												
Description	After the discovery of the reaction by Sabatier and Senderens in 1902, the reaction to convert CO and CO2 to methane has now been investigated and developed for more than 100												
	years [Rönsch etal. 2016]. Here we focus on the process starting from CO2. In an exothermal reaction CO2 is hydrogenated with H2 to produce methane, water, and heat. Both H2 and CO2 are provided in this case from external sources. CO2 methanation is a linear combination of CO methanation and reverse water–gas shift reaction and the equilibrium of both reactions is influenced by pressure (1-100 bar) and temperature (200-550 °C). Typically, a couple (2-7) of adiabatic fixed bed reactors are coupled in series to enhance temperature controle and conversion. Intermediate recycles are used to increase carbon conversion efficiency and product yield. To regulate temperature, recycles, and pressures, several compressors and heat-exchangers are integrated in the process. The product, often called synthetic natural gas (SNG), is mainly methane but may also contain some other gases, such as H2. Depending on the required purity of the methane, additional purification may be necessary, which can increase costs and energy use. We assume here that methane is produced at sufficient purity for use in other applications. Main developments are occuring in new technologic approaches, such as isothermal, sorption enhanced, and fluidised bed methanation. The methanation process is also relevant in the context of bio-SNG production.												
TRL level 2020	TRL 8												
	The process was developed more than 100 years ago. It has long been applied to purify gas streams (e.g. in ammonia synthesis), but during the oil crisis in the 70s also coal-to-gas concepts were developed. Recently, the CO2 hydrogenation process receives more attention in the context of power-to-gas projects, e.g. Audi's 6 MWe e-gas plant in Werlte that produces synthetic methane from CO2 and electricity. Although the technology is available on the market, further scale-up seems necessary and improvements can be made in process design and catalyst development. For these reason we estimate the TRL at level 8.												
TECHNICAL DIMENSIONS													
Canacity	PI Value and Range												
Capacity	F.J	0.10			-	57.00							
	Global	PJ		Current		2030	2050						
Potential			0.41	-		-	-						
Market share	Global	%	Min	-	Max	Min – Max	Min – Max						
		,,,,	Min		Мах	Min – Max	Min – Max						
Capacity utlization factor		•	-		•		1.00						
Full-load running hours per year	8,322.00												
Unit of Activity	PJ/year												
Technical lifetime (years)							25.00						
Hourly profile	No						0.90						
Explanation	The capacity is based on large scale methane production, e.g. a methanation plant coupled to a large-scale electrolyzer and DAC plant. Although significantly larger as the first e-gas plant in Werlte (0.1 PJ/yr, Audi e-gas), it is smaller as existing commercial coal-to-gas plants (>50 PJ/yr). We assume that the process runs 95% of the time (based on continous supply facilities for H2 and CO2). The progress ratio is derived from Detz 2018 (methanol plant), which might be conservative as the direct hydrogenation of CO2 is a rather novel technology and may learn faster than conventional methanation technology (typical starting from CO). This ratio is not used to estimate the future costs, the latter are based on projections given in literature.												
COSTS													
Year of Euro	2015	- **		O		2020	2010						
Investment costs	mln. € / PJ	17.00			14.00 – 14.00	11.00 - 12.00							
Other costs per year	mln. € / PJ	Min	-	Max	- Min – Max								
Fixed operational costs per year (excl. fuel costs)	mln. € / PJ		0.15	0.68 -	0.92	0.42 0.42 - 0.42	0.28 0.28 – 0.28						
Variable costs per year	mln.€/		-		-	-							
Costs explanation	The current plant-size of the Audi e-gas plant is around 0.1 PJ/yr, while commercial coal-to-gas plants reached >50 PJ/yr scale. In the latter a slightly different methanation process is used, because the feedstock is CO/H2 instead of CO2/H2. We assume that in 2020 the capacity of a CO2 hydrogenation methanation plant can be around 3 PJ/yr, with total investment costs of 17 M€/PJ (ranging from 3 to 24 M€/PJ). These costs decline thanks to learning and economies-of-scale to 14 M€/PJ in 2030 for a 10 PJ plant (2 studies) and further to 11 M€/PJ in 2050, also for a 10 PJ/yr plant. Such as plant size is considered a commercial scale renewable methanation plant as it requires an electrolyzer of around 540 MWe running continuously. If such a plant is connected to a pipeline network, which delivers both H2 and CO2, further scale up seems possible towards the 50 PJ scale, although we do not consider such a plant-size here. O&M costs estimates range between 2 and 5 % of which we select 4% for 2020 and allow a decline to 2.5% in 2050.												
ENERGY IN- AND OUTPUTS	Energy carrier	Unit		Current		2030	2050						
	Main output:			-1.00		-1.00	-1.00						
	SNG	РJ	-1.00	_	-1.00	-1.00 – -1.00	-1.001.00						
	Hydrogen	PJ	1.20	1.20	1.25	1.20	1.20						
energy carriers (per unit of main output)			1.20	- 0.01	1.35	0.01	0.01						
	Electricity	PJ	0.00	_	0.01	0.01 – 0.01	0.01 – 0.01						
	Heat	РJ		-0.08		-0.09	-0.10						
Energy in- and Outputs explanation	-0.08 - -0.09 - -0.09 -0.10 - -0.10 The reaction between hydrogen and CO2 produces methane, water, and heat. 4 mol H2 + 1 mol CO2 -> 1 mol CH4 + 2 mol H2O + heat. A share of the heat is used to drive a steam turbine, which produces electricity for the plant, but some heat remains to be used elsewhere (as product). Max energy efficiency to methane is 83% at 100% carbon conversion efficiency ranges typically between 90 and 100% in literature. Here we take 100% conv efficiency into product methane (based on Hannula 2016). The reaction is highly exothermic and efficient cooling results in the production of 0.08 PJ highgrade steam. Net electricity use for the plant ranges between 0.05 and 1.3% of which we select 0.01 PJ/PJ product. Overall, the energy efficiency (including steam) is 89% or 1.20 PJ H2 and 0.01 PJ electricity to produce 1 PJ of methane and 0.08 PJ of heat. Future plants may become slightly more efficient in recovering heat production, so we improve the heat yield to 0.1 PJ/PJ SNG in 2050.												
MATERIAL FLOWS (OPTIONAL)	Matorial	Linit		Current		2020	2050						
	CO2	Mton/PI		0.06		0.06	0.06						
Material flows		product	0.06	-	0.06	0.06 – 0.06	0.06 – 0.06						
	Water	Mton/PJ		-0.05		-0.05	-0.05						
	The area at a standard	product	-0.05	-	-0.05	-0.050.05	-0.050.05						
Material flows explanation	The reaction between hydrogen an carbon conversion efficiency to me	d CO2 produces thane is reache	s methane and y and only wate	water. 4 mol H er and heat are	2 + 1 mol CO2 · generated as l	-> 1 mol CH4 + 2 mol H2O. We assume th hyproducts.	at after several reactors and recycles, a 100%						
EMISSIONS (Non-fuel/energy-related en	nissions or emissions reductions (e.	g. CCS)			Serier atea as i								
Emissions	Substance	Unit		Current		2030	2050						
	0	0		-		-	-						
	0		Min	_	Max	Min – Max	Min – Max						
	U	U	Min	-	Max	- Min - May	- Min - Max						
				-		-	-						
			Min	-	Max	Min – Max	Min – Max						
			N A :	-	Λ / ~···	-	-						
Emissions explanation	CO2 is used as feedstock in the pro-	L cess (see mater	rial flows).	_	IVIUX	IVIIII – IVIAX	IVIIII – IVIAX						

OTHER											
Parameter	Unit	Current			2030			2050			
		-									
		Min	-	Max	Min	-	Max	Min	-	Max	
			-	-		-	-		-		
		Min	-	Max	Min	-	Max	Min	-	Max	
			-			-					
		Min	-	Max	Min	-	Max	Min	-	Max	
			-			-	-				
		Min	-	Max	Min	-	Max	Min		Max	
Explanation											
REFERENCES AND SOURCES											
Rönsch et al. 2016. Review on methanati	on – From fundamentals to current projects										
Audi e-gas. Info on for instance http://ww	<pre>ww.cedec.com/files/default/8-2014-05-27-cedec-ga</pre>	is-day-reinhard	d-otten-audi-ag	.pdf							
Detz et al. 2018. The future of solar fuels	: when could they become competitive?										
Tremel et al. 2015. Techno-economic ana	alysis for the synthesis of liquid and gaseous fuels ba	ased on hydro	gen production	via electrolysis							
Agora 2018. The Future Cost of Electricity	y-Based Synthetic Fuels (by J. Perner et al. Frontier F	Economics)									
IEA 2019. The Future of Hydrogen (Assun	nptions Annex)										
Hannula 2016. Hydrogen enhancement p	otential of synthetic biofuels manufacture in the Eu	uropean conte	xt: A techno-ec	onomic assessn	nent						
Parra et al. 2017. An integrated techno-e	conomic and life cycle environmental assessment o	of power-to-ga	s systems								
Götz et al. 2016. Renewable Power-to-Ga	as: A technological and economic review										
Schmidt et al. 2016 Renewables in Transp	oort 2050 (LBST study for FVV)										
Fasihi et al. 2016. Techno-Economic Asse	ssment of Power-to-Liquids (PtL) Fuels Production a	and Global Tra	ding Based on I	Hybrid PV-Winc	Power Plants.	Energy Proced	dia 99 (2016) 24	3 – 268			