TECHNOLOGY FACTSHEET

TNO

FISCHER-TROPSCH FUEL PRODUCTION												
Date of factsheet	20-12-2019											
Author	Remko Detz											
Sector	Industry: Petrochemics											
ETS / Non-ETS	ETS											
Type of Technology	Production Mixing CO with H2 (provided from external sources) provides the syngas which can be used in a Fischer-Tropsch (FT) plant to produce FT synthetic fuels. The syngas is converted in the											
Description	FT reactor into a mixture of hydrocarbons. The crude FT oil exists typically (e.g. Shell's Middle Distillates Synthesis) out of long chain waxy molecules and is subsequently upgraded by a hydro-isomerisation and hydrocracking step (mild conditions of temperature and pressure) and distillation to produce the desired, lighter products. Although the mixture of produced hydrocarbons may vary depending on the process and conditions, we here assume that the energy use and costs remain the same. As desired, the process produces either a high share of diesel (diesel mode) or kerosene (kerosene mode). This results for diesel mode in 60% (energy) diesel, 25% (energy) kerosene and 15% (energy) other oil products, and for kerosene mode in 25% diesel, 50% kerosene, and 25% other oil products. [Schmidt 2016a, Schmidt 2018, Ansorge]											
TRL level 2020	TRL 9											
	The FT process is developed one century ago and applied at commercial scale ranging from 15000-260000 bbl/d. Typically the syngas is produced by natural gas reforming or the gasification of coal [Shell's Pearl GTL plant]. To start from CO2, RWGS (or another CO production route) is required (not integrated in this factsheet) to produce the CO. Such technology has been demonstrated, but not at full commercial scale (TRL 7). An alternative to produce syngas is by co-electrolysis of water and CO2 in high temperature electrolyzers, which is also a technology that is not fully mature (TRL 6). Here we only assess the FT reactor and upgrading, which is (starting from syngas) operated at full commercial scale, i.e. TRL 9. For small scale FT plant implementation some development may be required to adjust these to the upstream syngas production step.											
TECHNICAL DIMENSIONS	Eurotional Unit	1	Value and Range									
Capacity	PJ	10										
			0.17 - 570.00									
Potential	EU	PJ		Current			2030			2050 8.816		
i otentiai			0.30	-	0.50	2,472	-	2,472	4,610	-	14,991	
Market share	EU	%		-		10.50	16.59	10.50		64.25	0.0.4.5	
Capacity utlization factor		1	-	-	-	16.59	-	16.59	39.46 1.00	-	86.15	
Full-load running hours per year									8,322			
Unit of Activity	PJ/year								25			
Progress ratio	25 0 90											
Hourly profile	No											
Explanation	The potential is very high if the full amount of hydrocarbon fuels currently used is considered. We depict the average projection of Siegemund et al. (2017), who made an estimate of the potentials for the European transport sector based on various assumptions. We assume that the process runs continuously (based on constant supply of H2 and CO). The progress ratio is derived from Detz (2018) (FT plant), which might be conservative as a smaller scale FT plant is a rather novel technology and may follow a different learning curve than conventional FT technology, especially if modular designs are developed integrated with rWGS/electrolysis.											
COSTS Year of Euro	2015											
	Euro per Functional U	nit		Current			2030		2050			
Investment costs	mln. € / PJ		10.00	30.00			13.00	17.00		10.00		
Other costs per year	mln. € / PJ		13.00	-	37.00	10.00	-	15.00	9.00	-	11.00	
Fixed operational costs per year	mln. € / PJ		Min	- 1.20	Мах	Min	- 0.52	Max	Min	- 0.40	Max	
(excl. fuel costs) Variable costs per vear	mln. € /		0.65	-	1.85	0.45		0.60	0.40	-	0.45	
Costs explanation	Min-MaxMin-MaxMin-MaxThe capex for the FT plant (synthesis and upgrading processes) ranges between 14 and 53 Meuro/PJ fuel output for a 3 PJ capacity plant (9 studies), while it is 10-37 Meuro/PJ for a 10PJ plant We selected a value of 30 Meuro/PJ for 2020. For a 10 PJ plant in 2030, the costs are projected in 3 studies to go down to 10-15 Meuro/PJ, while further reductions areexpected for 2050: 9-11 Meuro/PJ (4 studies). We select 13 Meuro/PJ for 2030 and 10 Meuro/PJ for 2050. O&M ranges between 3-5% of which we selected 4% from the investment costs.											
ENERGY IN- AND OUTPUTS	Energy carrier	Unit	T	Current			2030			2050		
	Main output:			-1.00			-1.00			-1.00		
	Synthetic fuels		-1.00	- 0.02	-1.00	-1.00	- 0.02	-1.00	-1.00	- 0.02	-1.00	
Energy carriers (per unit of main output)	Electricity	PJ	0.02	-	0.02	0.02	-	0.02	0.02	-	0.02	
	Hydrogen	PJ	0.79	0.91	0.92	0.91	0.91	0.91	0.91	0.91	0.91	
	со	РJ	0.10	0.53	0.52	0.52	0.53	0.52	0.52	0.53	0.52	
	The difference in energy and mass	ratios between	0.46 diesel, kerosen	– e, and oil prod	0.53 ucts is neglecte	0.53 d because the	error is small (1	0.53 typical LHV of t	0.53 hese fuels is 43	– 8 MJ/kg) and t	0.53 he values	
Energy in- and Outputs explanation	depend on the exact composition of the synthetic hydrocarbon fuel produced by the chemical reaction. At diesel mode, the process produces 1 PJ of hydrocarbon products of which 0.6 PJ diesel, 0.25 PJ kerosene, and 0.15 PJ other oil products. At kerosene mode, the process produces 1 PJ of hydrocarbon products of which 0.25 PJ diesel, 0.50 PJ kerosene, and 0.15 PJ other oil products. At kerosene mode, the process produces 1 PJ of hydrocarbon products of which 0.25 PJ diesel, 0.50 PJ kerosene, and 0.25 PJ other oil products. We assume a carbon efficiency of 88% from CO to products for 2020. Although the carbon efficiency may slightly improve after development over time, we here assume it remains constant towards 2050.											
MATERIAL FLOWS (OPTIONAL)				0			2022			2010		
Material flows	Material Water	Unit		-0.03			-0.03			-0.03		
		Mton	-0.03	-	-0.03	-0.03	-	-0.03	-0.03	-	-0.03	
	Heat produced	PJ	-0.33	-0.33 –	-0.33	-0.33	-0.33	-0.33	-0.33	-0.33 –	-0.33	
Material flows explanation	The reaction between hydrogen an high grade heat can be produced b byproduct, typically around 0.03 M	d CO produces y the exotherm t/PJfuel of proc	FT fuels, heat, a al process and c ess water is pro	nd water. 2 m combustion of duced.	ol H2 + 1 mol C waste products	O -> 1 mol ~CH after extraction	H2~ + 1 mol H2C on of internal he	D. Besides 1 PJ eat use for upg	of fuels, we ass rading and pur	ume that arouification. Wat	und 0.33 PJ of er is another	
EMISSIONS (Non-fuel/energy-related en	nissions or emissions reductions (e.	g. CCS)										
	Substance	Unit		Current			2030			2050		
Emissions	02	Mton	-0.01	-0.01 -	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01 -	-0.01	
		1		-		a. c t	-		A #*	-	A. #	
		+	Min	-	Мах	Min	-	Мах	Min	-	Max	
			Min	-	Max	Min	-	Max	Min	_	Max	
			Min	-	Мах	Min	-	Мах	Min	-	Мах	
Emissions explanation	The carbon conversion efficiency to	fuels is 88%, th	ne remaining 12	% is converted	l into fuel that	is not a FT fuel	output (e.g. et	hane/methane) and is used as	s purge gas an	d burned with	

OTHER											
Parameter	Unit	Current			2030			2050			
			-			-			-		
		Min	-	Max	Min	-	Max	Min	-	Max	
			-	I		-	T		-	1	
		Min	-	Max	Min	-	Max	Min	-	Max	
			-	1		-	1		-	Г	
		Min	-	Max	Min	-	Max	Min	-	Max	
		Min	-	Мах	Min	-	Мах	Min	-	Мах	
Explanation											
REFERENCES AND SOURCES											
Schmidt et al. 2016_Renewables in Trans	port 2050 Empowering a sustainable mobility future	e with zero em	ission fuels fro	m renewable e	lectricity Krafts	toffstudie II					
Agora 2018 The Future Cost of Electricity	-Based Synthetic Fuels (by J. Perner et al. Frontier E	conomics)									
Detz et al. 2018_The future of solar fuels	: when could they become competitive?										
Shell Pearl plant, https://www.shell.com/	/about-us/major-projects/pearl-gtl.html										
Siegemund et al. 2017_E-fuels study, The	potential of electricity-based fuels for low-emission	n transport in t	he EU, an expe	rtise by LBST a	nd dena						
Schmidt et al 2018_Power-to-Liquids as R	Renewable Fuel Option for Aviation: A Review										
Tremel et al. 2015_Techno-economic ana	lysis for the synthesis of liquid and gaseous fuels ba	ised on hydrog	en production	via electrolysis							
Terwel et al. 2018_Carbon neutral aviation	on with current engine technology: the take-off of sy	ynthetic kerose	ne production	in the Netherla	ands						
IEA 2019_The Future of Hydrogen (Assum	nptions Annex)										
Hamelinck 2004_Production of FT transpo	ortation fuels from biomass; technical options, proc	ess analysis an	d optimisation	, and developm	ent potential_	Energy 29, 174	3–1771				