TECHNOLOGY FACTSHEET

V.2

TNO

INDUSTRIAL NATURAL	. GAS CHP - GAS TURBINE	S WITH	HEAT REC	OVERY	STEAM GI	ENERATO	RS					
Date of factsheet	6-5-2020											
Author	Loes Rutten	Loes Rutten										
Sector	Industry: Generic											
FTS / Non-FTS	FTS											
Type of Technology	CHP											
Description	Combined Heat and Power units (CHPs) are the most efficient way to convert fuels into useful energy (IEA-ETSAP, 2010). The most common conventional industrial CHPs are the										he	
	natural gas-fired gas turbine with heat recovery steam generators (GT-HRSG), and the combined-cycle gas turbine (CCGT), which is a combination of a gas turbine and a steam turbine											
	The high temperature heat from the gas turbine exhaust can be used to produce high pressure steam of temperatures up to 593 °C (US EPA CHP Partnership, 2017). The hot exhaust											
	from the gas turbine can be directed through a steam turbine to generate additional electricity, or can be used to provide steam for industrial processes.											
	energy inputs and outputs) on gas turbines with heat recovery steam generators, although technical dimensions applied to the industry sector cover both GT and CCGT. Techno-											
	economic data for CCGT can be consulted in Niessink (2019).											
	The two main types of turbines used in gas turbine CHPs are aeroderivatives and heavy duty turbines. Aeroderivatives are derived from the airplane industry and provide up to											
	50MWe. They heat up relatively fast (15-45 minutes) and operate with 2-3 axes. Heavy Duties are especially designed for heavy industry, with capacities up to 150MWe, high reliability											
	(Energy Matters, 2015), According to CBS (2020) data, gas turbine CHP are deployed in all type of industries. CCGTs are mainly used in the chemical industry. Cas turbines are most											
	common in chemical industry and refineries (CBS, 2020).											
	The advantages of GT-CHPs over other types of CHP are high reliability, low emissions and the ability to produce high grade heat. Disadvantages include the required high pressure of											
	input gas, and poor efficiency at low l	input gas, and poor efficiency at low loading (US EPA CHP Partnership, 2017).										
	A typical industrial CHP application for gas turbines is a chemical plant with a 25MW simple cycle gas turbine supplying base-load power to the plant with an unfired heat recovery											very
701 1 1. 2020		system generator (moo) on the exhaust. This gas turbine Che system will produce approximately 29MW thermal (MWth) of steam for process use within the plant.										
TRL level 2020	IRL 9	TRL 9										
	due to the demand for turbines for airplanes, and since the 1990s they have been a popular choice for new power generation plants (US FPA CHP Partnership, 2017).											
						p-	Series and	. p.a (00				
TECHNICAL DIMENSIONS												
	Functional Unit					V	/alue and Rang	e				
Capacity	MWe	MWe				T	20.00					
				1.00			-			500.00		
Potential	NL	MWe		Current			2030			2050		
				2,000.00			2,000.00			-		
		0/	2,000.00	-	2,808.00	2,000.00	-	2,000.00	Min	-		Max
Market share	Share of GT and CCGT Installed	%	02.00	93.00	02.00	Adia	-	Mary	\ <i>\\</i> iio	-		May
Capacity utilization factor			93.00	-	93.00	IVIII	-	IVIOX	IVIII	_		IVIAX
Full-load running hours per year	0.55-0.8							8 300 0	0			
Unit of Activity								0,500.0	0			
Technical lifetime (years)								25.00				
Progress ratio												
Hourly profile												
Explanation	Capacity: Energy Matters (2015) cate	gorises indus [.]	trial CHPs as sm	all (<10 MWe	e), medium (10-2	25 MWe) and la	rge (>25MWe)	. IEA-ETSAP (20)10) reports ca	pacity range	s of 5-25	MW for
	gas turbines with HRSG and 12-500 N	1W for CCGT.	US EPA CHP pa	rtnership (20	17) reports a rar	nge of 0,5-300 N	/W.					
	Detential: As of 2015, there were 2.00	DO MANA of In	dustrial CLID as	nacity Thora	ic a downward t	rand in canadity	u with a large (mount of cons	aitu abut davu	a in the early	2010c d	ue te
	low electricity prices (Energy Matters		rding to CBS (20	pacity. There)20) there wa	is a downward t	5 785 MWe inst	alled CHP cana	city from CCGT	and GT CHPs	in the Nether	rlands in	2017 Of
	this, 3,102 MWe were for decentraliz	this, 3,102 MWe were for decentralized production. About 91% of the decentralized capacity (2.808 MWe) was estimated to be in the industrial sector. According to FCN (2017) the										
	industrial heat demand for temperatures between 100-200 is 5,050 MW. Besides CHPs, this heat demand can be delivered by a range of different technologies including steam boilers											
	and heat pumps.											
	Market share: a 2,808 MWe GT and CCGT installed capacity in the industry sector corresponds to 93% of total CHP installed capacity in the Dutch industry (3,029 MWe).											
	Capacity utilization factor: EnergyMatters (2015) reports a factor of 1 for full load and 0.8 for partial load of a 6 MWe GT CHP. IEA-ETSAP (2010) reports lower factors: 0.7-0.8 for GT											
	CHPs and 0,75-0,85 for CCGTs. The utilization rate of a given gas turbine or combined cycle gas turbine CHP unit depends on the economic conditions ("spark spread" between natural											
	gas and electricity prices) in the country, as well as on the on-site heat and electricity demands, which can vary by sector and process.											
	Full-load running hours: US EPA CHP Partnership (2010) reports an average number of 8,308 hours per year based on several figures ranging from 8,426 hours for <3MW CHPs to 8195											
	CHPs. Their scenario with the lowest amount of running hours is one where the CHP is only used during davtime, which adds up to 3,000 hours.											
	Technical lifetime: IEA-ETSAP (2010)	reports 25 ye	ars for both GT	and CCGT.								
COSTS												
Year of Euro	2015											
Investment costs Other costs per year	Euro per Functional Unit	t		Current			2030			2050		
	mln. € / MWe			0.60			0.56	1		-		
			0.59	-	2.06	0.56	-	0.56	Min	-		Max
	mln. € / MWe		a	-	a	a.c.	-	B. Ø.	A 41	-		0.0.
Fived encrotional costs -			IVIIN	-	IVIAX	IVIIN	-	Ινιαχ	IVIIN	-		ινίαχ
(excl. fuel costs)			0.02	0.06	0.07	Min	-	Max	Min	-	<u> </u>	Max
	mln f /		0.02	-	0.07	171111	-	IVIUA		-		IVIUA
Variable costs per year			Min	_	Max	Min	_	Max	Min	-		Max
	Investment costs: Energy Matters (20)15) reports ir	nvestment costs	of 500, 600 a	and 700 Euro per	r kWe for GT CH	IPs of 6, 22 and	42 MWe resp	ectively. IEA-E	TSAP reports	costs of	950
	USD2008 (900 USD in 2030). US EPA (CHP Partners	hip (2017) repo	rts values from	m 3181 to 1248	USD2013 for CH	IPs from 3 to 4	4MW, including	g a full breakd	own of these	costs. U	S Dept.
	Of Energy (2017) reports significantly	Of Energy (2017) reports significantly higher values of 1300-3300 USD/kW.										
Costs explanation									c.		1-	<i>;</i>
	Operational costs: O&M costs consist of routine inspections and scheduled overhauls of the turbine generator set. Operational costs were often reported in units of Euro/MWh. These											
	Were multiplied by the corresponding running nours per year to obtain the yearly operational costs per IVIW. Energy Matters (2015) reports values of 71/62/48 Euro per kWe for 6/22/42 MWe gas turbines. IEA-ETSAP reports 40 USD2008 for GTs. US EPA CHP Partnership (2017) reports 105 to											
	71 USD2013 for 3 MW to 44 MW gas	turbines. US	Dept. Of Energy	(2017) repor	ts 9 to 13 USD p	er MWh but do	esn't specify th	ne running hou	rs.		,	
			57		1-	-		5				

ENERGY IN- AND OUTPUTS												
	Energy carrier	Unit	Current			2030			2050			
Energy carriers (per unit of main output)	Main output:	PJ	-1.00			-1.00			-			
	Electricity		-1.00	-	-1.00	-1.00	_	-1.00	Min	-	Max	
	Natural gas	PJ		2.99			2.78	-		-		
			2.63	-	2.99	2.78	-	2.78	Min	-	Max	
	Heat	PJ		-1.24			-0.74			-		
			-1.32	_	-1.11	-0.74	-	-0.74	Min	_	Max	
		Ы		-			_			-		
		FJ	Min	_	Max	Min	_	Max	Min	-	Max	
Energy in- and Outputs explanation	Natural gas values are presented i Energy Matters (2015) reports ele electric/thermal efficiency for a ga electric efficiency projected for 20 US EPA CHP Partnership (2017) re By Dutch law, the minimum electr partial load, which decreases the e	n LHV. ctric efficiencies as turbine. IEA-E 30. ports lower valu ic efficiency of a efficiency as a ne	of 31,5% - 33,5% TSAP (2010) rep es of 22-33% ele n industrial CHP egative conseque	% and thermal orts 32-37% ele ectric efficiencie is 30%. In a sci ence. (Energy N	efficiencies of ectric efficiency es for 3-44 MW enario where (Matters, 2015)	41,5% - 42,5%. y and 48-43% th / CHPs CHPs are deploy	In a memo fro nermal efficien yed in a more f	m 2013, Energy cy for GT CHPs, lexible matter,	/ Matters present with 1,5% imp there will be n	ents 38%/42% provements to nore time that	wards higher they work in	
MATERIAL FLOWS (OPTIONAL)				<u> </u>								
	Material	Unit	Current			2030			2050			
Material flows			0.din	-	A 4	A dise	-	A 4	1 dia	-	A <i>a a a a</i>	
			IVIIn	-	Max	IVIIN	-	Max	Min	-	Max	
			Min	-	Max	Min	-	Max	Min	-	Max	
Material flows explanation												
EMISSIONS (Non-fuel/energy-related en	nissions or emissions reductions (e	.g. CCS)										
	Substance	Unit	Current			2030			2050			
Emissions				-			-	1		-		
			Min	_	Max	Min	_	Max	Min	-	Max	
				-			-	1		-	1	
			Min	-	Max	Min	-	Max	Min	-	Max	
				-			-			-		
			Min	-	Max	Min	-	Max	Min	-	Max	
				-			-		6. <i>d</i> 1	-		
			Min	_	Max	IVIIN	_	Max	IVIIn	-	Max	
Differ	Unit			Current			2020			2050		
Parameter	Unit		Current			2030			2050			
			Min	-	Max	∧ <i>1ip</i>	-	1 Acres	Min	-	Max	
			IVIIII	-	IVIUX	IVIIII	_	IVIUX	IVIIII	_	IVIUX	
			Min	_	Max	Min	_	Max	Min	_	Max	
			IVIIII	_	IVIUX	101111		IVIUX	IVIIII		IVIUX	
			Min	_	Max	Min	_	Max	Min	_	Max	
				-	ITTOK		_	Max		-	TTTOK	
			Min	_	Мах	Min	_	Мах	Min	_	Мах	
Explanation			171111		TTIMA			ITIMA	1 ¥ 1111		TTIMA	
REFERENCES AND SOURCES	· · · · · · · · · · · · · · · · · · ·											
Catalog of CHP Technologies, U.S. Enviro	nmental Protection Agency Comhir	ned Heat and Po	wer Partnershin	. 2017								
		ica nicat ana i o	mer i artiferonip	, ,								
Flexibilisering industriële WKK. Energy M	latters, 2015											

Combined Heat and Power Technology Fact Sheet Series, U.S. Department of Energy, 2017Centraal Bureau voor de Statistiek, OpenData, Elektriciteit; productie en productiemiddelen; Warmtekrachtkoppelinginstallaties (WKK), 2020Memo, Energy Matters, 2013Review of the reference values for high-efficiency cogeneration, RICARDO-AEA, 2015Verkenning voorlopige analyse WKK, CE Delft, 2015Opwekkingsrendementen bio-WKK, gas-WKK en collectieve HR-ketels, ECOFYS, 2011Dutch program for the Acceleration of Sustainable Heat management in industry, ECN, 2017

GAS-FIRED CHP PLANT - ELECTRICITY PRODUCTION AND DISTRICT HEATING, technology fact sheet. Available at: https://energy.nl/wp-content/uploads/2019/07/Technology-Factsheet-Gas-fired-CHP-Plant-Electricity-Production-and-District-Heating.pdf