TECHNOLOGY FACTSHEET

MUNICIPAL SOLID WASTE	INCINERATOR - ELECTRICIT	Y PRODUCTIO	ON AND DI	STRICT HE	ATING							
Date of factsheet	4-12-2018											
Author	Robin Niessink, Elodie Jegu											
Sector	Built environment											
	Other sectors											
ETS / Non-ETS	Non-ETS CHP											
Type of Technology	CHP											
	Waste streams can be avoided in a number of ways. These include waste prevention, the re-usage of materials and the recycling of materials. When waste streams are no longer avoidable is possible to utilize them to generate energy (ECN, 2006), both heat and electricity. Waste incinerators (in Dutch 'afvalverbrandingsinstallatie/AVI' or 'afval energiecentrale'), can be utilised this purpose (Vereniging van afvalbedrijven, 2017).											
Description	Working of the Technology A waste incinerator or waste-to-energy plant can be a combined-heat and power-plant (CHP). Water is evaporated in a boiler to produce high pressure steam which is expanded in a turbine to generate electricity using a generator. Cooling water cools down the water that has passed through the turbine. From the drain of the steam turbine heat can be fed into a heat network. Heat can be supplied to different sectors such as the built environment, industry or horticulture. This factsheet focuses on a waste CHP plants connected to a heat network. A waste incinerator without CO2 capture and storage (CCS) is considered in this factsheet.											
	In most cases, waste-to-energy plants are utilised to burn a mixture of municipal solid waste (MSW) and company waste. The waste incinerator technology generally employs moving grate furnaces (ETRI, 2014).											
	Main Components The main technological components of a waste incinerator consist of a waste bunker, cranes, furnace, ash storage bunkers, boiler, fly ash handling equipment, slag handling equipment and wet gas washing equipment. Waste incinerators are also equipped with advanced flue gas cleaners to prevent or limit the emission of various possibly harmful substances, amongst others: PM, VOC, NOx, NH3, SO2. Flue gas cleaners are included in the costs presented in this factsheet.											
	Energy production related aspects The waste mixture is partly biogenic Ecofys, 2014).					· · ·			·			
	The downside of utilizing heat for district heating is that it lowers the electrical efficiency of CHP plants (loss of electricity production). Typical losses are given in this factsheet. It is also important to note that the energy produced by waste incinerators is a by-product of waste treatment (Ecofys, 2014). This means that the amount of energy produced can be higher of lower depending on waste availability and that the level of energy produced will not necessarily follow energy demand. Last but not least, heat and electricity output can be controlled and											
	can vary depending on the season.											
TRL level 2020	TRL 9 The technology is already being applied on a large-scale and can therefore be considered to be mature (ECN, 2006). Currently, there are 12 waste incinerators in the Netherland (CBS, 2018). Examples of waste incinerators used for district heating are AEB Amsterdam, AVR Rijnmond, HVC Alkmaar and AVI Duiven (ECN, 2017).										nd (CBS, 2018).	
TECHNICAL DIMENSIONS												
	Functional Unit						Value and Rang	je				
Capacity	MWe								1		8	
				-	31		-				154	
	MWe	NL		Current			2030			2050		
Potential			-					-		T	-	
Market share	%	Share of final heat	Min	-	Max	Min	-	Мах	Min	-	Max	
		demand built environment	1.1	-	1.1	Min	-	Max	Min	-	Max	
Capacity utlization factor								0.6	0			
Full-load running hours per year								5,26	52			
Unit of Activity	PJe/year							-, -			1.65	
Technical lifetime (years)	,							30	1			
Progress ratio								-				
Hourly profile	Vec											
Explanation	Yes Rijkswaterstaat published a report with data on a number of waste incinerators in the Netherlands, including: AEB Amsterdam, AVR Rijnmond, HVC Alkmaar, SITA ReEnergy Roosendaal and AVI Duiven (Vereniging van afvalbedrijven, 2017). The report provides information on the annual gross electricity production (GWhe) of each incinerator and on the heat they supplied (TJ) to heat networks in 2016. The thermal (MWth) and electrical capacities (MWe) of CHP plants are also provided. Electrical Capacity Of Waste Incinerators In The Netherlands											
	In 2016, the electrical capacity of waste incinerators (i.e the ones used for district heating) in the Netherlands varied between 31 and 154 MWe (Rijkswaterstaat, 2017). The main electrical capacity given above is an average of the capacity of the five waste incinerators mentioned above (Vereniging van afvalbedrijven, 2017). On average, these five waste CHP plants are run on full-load around 5.262 hours per year. This translates to a capacity utilisation factor of 60%. A CHP plant with a capacity of 87MWe produces 1,65 PJe per year (at a capacity factor of 60%).											
	Heat Capacity Of Waste Incinerators In The Netherlands Full load hours for district heating are not the same as for electricity generation. This is because there is a different load duration curve for heat. Indeed, the demand for heat peaks in the winter, but remains considerably lower in the other seasons. Heat is continuously available at waste incineration plants. However, due to limited overlap with the heat demand, only 30 to 45% of the available heat can be supplied per year (ECN, 2011). A heat loss of 25% in the heat networks can be assumed (ECN, 2017a). If there are 4.500 full-load hours (Energy Matters, 201 and the heat source produces 0,8 PJth per year, then the thermal output capacity for district heating needs to be around 50MWth. The minimum heat disconnection capacity for district heating is 3MWth (PBL, 2017).											
	Heat Production and Supply of Waste Incinerators In The Netherlands In 2017, waste incinerators in the Netherlands produced about 23 PJth of heat (CBS, 2018). This heat is partly supplied to the built-environment, and partly to other sectors. The un-utilised heat is lost. The Centraal Bureau voor de Statistiek (CBS) does not provide specific figures about the heat supplied by waste incinerators to the built-environment. However, based on the statistics from ECN (2015 data) and Rijkswaterstaat (2016 data), it can be estimated that waste incinerators supplied 4 to 6PJ of the final heat demand of the built-environment (ECN, 2017a; Vereniging van afvalbedrijven, 2017). In 2016, the final heat demand in the built-environment amounted to 452PJ (ECN, 2017b). Based on the above estimates, this would mean that in that year waste incinerators provided 1% of the total heat demanded by the sector.											
	Waste Availability In The Netherlands While the capacity (efficiency) of waste incinerators in the Netherlands increased in the last few years, the inland availability of waste decreased (CBS, 2018). Since the Netherlands is located close to the sea, it is however relatively cheap to import waste from other European countries with low waste-treatment capacities (CBS, 2018).											
	ECN (2011) indicates that, in the Net total installed capacity has already ir Technical Lifetime Waste Incinerator	ncreased over the la		ied by waste i	ncinerators can	increase by 11	L PJth (ECN, 201	1). Some of this	s potential has a	already been	utililised since	
	ECN (2011) indicates that a waste ind		nical lifetime of	30 years (ECN	, 2011). ETRI (20	014) indicates a	a technical lifeti	me of 25 years	(ETRI, 2014).			

Investment costs	Euro per Functional U mln. € / MWe	nit		Current	5.66		2030	5.27		2050		4.50	
	·		2.78	-	8.06	4.03	-	7.30	3.30	-		5.97	
Other costs per year	mln. € / MWe		Min	-	- Max	Min	-	Max	Min	-		- Max	
ixed operational costs per year excl. fuel costs)	mln. € / MWe		-	-	0.25 0.37	0.18	-	0.24	0.15	-		0.2	
ariable costs per year	mln. € / MWe		0.04	-	0.04 0.14	0.04	-	0.04	0.04	_		0.0 0.0	
Costs explanation	Overview: Waste incinerators have relatively hig implementation of such systems acco 2018). In addition to this, high fuel-ha ash and bottom ash) may also influen The ETRI (2014), Energy Matters (201 operational costs (FOM), and variable	unts for 15 % to 3 ndling costs shoul ce implementation 2), ECN (2006), PB	5% of total capita d also be conside n accosts and mi L (2017) and ECN	al investments ered (ETRI, 201 nimize landfilli I (2011) repor	, and possibly a .4). Different ap ng costs. ts provide infor	additional operatoproaches and r	tional costs, regulations of te incinerator	but it can reduce n the treatment,	e treatment cos recovery and d	ts (Europea lisposal of a	an Comm ash resid	nission, ues fly	
	 Costs explanation per source ETRI (2014) lists a range of CAPEX per MWe for a municipal solid waste incinerator with a net electrical capacity of 50MWe (ETRI, 2014). The following cost components are included in the CAPEX (ETRI, 2014): civil and structural costs, major equipment costs, balance of plant costs, electrical and I&C supply and installation, indirect project costs and development costs. The costs not included are: interconnection costs and insurance costs. ETRI indicates a CAPEX of 4.430 to 8.020 €/kWe in 2020, a CAPEX of 4.010 to 7.260 €/kWe in 2030 and a CAPEX of 3280-5940 €/kWe in 2050. The fixed operational costs (FOM) per year amount to 4,5% of the CAPEX (same in 2020, 2030 and 2050). This is namely 3,0% for FOM and 1,5% for FOM refurbishme The VOM per year amount to 6,9 €/MWh (same in 2020, 2030 and 2050) and is converted to €/MW by assuming 5.262 full load hours per year. Labour cost for construction/installation amounts to 1,5% of the CAPEX (same in 2020, 2030 and 2050). Energy Matters (2012) suggests that investment costs for a waste incinerator reach 2.700 € per kWe for a plant with capacity of 60MWe. Here the CAPEX include: civil and structural cost 											The 3280- ishmen tion ral cost	
	 and major equipment costs including 2012). This plant is used for electricity ECN (2006) suggests that the invest heat disconnection costs. This plant is per year amount to 5% of the investmer year. When a CHP plant supplies heat to a H PBL (2017) indicates an investment uitkoppeling'). The fixed operational costs investment costs investment costs. 	y production and d ment costs of a was used for electricit nent costs (ECN, 20 neat network for th of 150-175 euros costs per year amo	istrict heating. aste incinerator by production an 006). The variable ne first time, the 2017/kWth, out ount to 5% of the	reach 1.940 €/ d district heati e operational o re are additior out (PBL, 2017 investment co	kWth (ECN, 200 ng. The therma costs per year a nal investment o). The costs con post (PBL, 2017).	06). Here the CA Il capacity is 186 are 22 €/MWhe costs for heat di asist of the inves	APEX includes MWth and t (ECN, 2006) isconnection: stment/CAPE	: civil and struct the electrical cap and is converted : X for heat discor	ural costs, majc bacity 56 MWe. I to €/MW by as nnection (in Dut	or equipme The fixed c ssuming 5.2 tch 'kosten	nt costs i operation 262 full lo warmte	includir Ial costs Dad hou	
NERGY IN- AND OUTPUTS	Energy carrier	Unit		Current			2030			2050			
	Main output:	PJ		current	-1.00		2030	-1.00		2050		-1.	
	Electricity		-1.00	-	-1.00 4.14	-1.00	-	-1.00 4.14	-1.00	-		-1. 4.	
Energy carriers (per unit of main output)	Waste (biogenic)	PJ	1.77	-	4.14	1.72	-	4.14	1.31	-		4.	
	Waste (non-biogenic)	PJ	1.45	-	3.53 3.53	1.41	-	3.53 3.53	1.07	-		3. 3.	
	Heat	PJ	-2.30	-	-2.30 -1.33	-2.30	-	-2.30	-2.30	_		-2. -1.	
	reach up to 550 degree Celsius (and 4				ies can only rea	ach 400 degree	Celsius (and -	40 bars) whilst fo). Indeed, B thermal po			
nergy in- and Outputs explanation	 Ratios According to CBS 'Hernieuwbare Er 10.130 TJ of net electricity production production divided by 77.631 TJ waste The National Energy Outlook (2016 efficiency is expected to reach 19% ar assumed 55 % in all years. A study by CE (2010) gives on overv efficiency (for district heating). In the Furthermore 55% biogenic waste is as ETRI (2014) discusses the net electr Furthermore 55% biogenic waste is as 	O bar) (Brunner an nergie in Nederland n divided by 77.631 e input (CBS, 2018)) projects that was nd the thermal effi view of efficiencies table above a 15% ssumed. rical efficiency of a ssumed in all years	d Rechberger,20 d 2017' the ratio TJ waste input In 2017, 54% o te incinerators w ciency 23%. In 2 of waste inciner conversion effic municipal solid This plant is us	of net electric (CBS, 2018). Th f the energy co vill have an ele 050, the electric rators in the No ciency from en waste incinera ed for electric	ity production (be average ther content of waste actrical efficiency i rical efficiency i etherlands. The ergy input to he tor. In 2020, 20 ty production.	(i.e. elec. produce mal efficiency for e was renewable cy of 16% and a is expected to re- e waste incinera- eat for district h	ction minus s or the conver e (i.e. biogeni thermal effic each 20% and ators have a r leating is take e suggested r	40 bars) whilst for self-consumption rsion of waste in ic) (CBS, 2018). d the thermal eff net electrical effi en and a 20% eff net efficiency are	ossil fuels fired f) to energy inpu put to heat is 30 2020 (ECN, 201 iciency 20%. Th iciency of 10-27 iciency for elect	thermal po ut from wa 0%, namely .6b). In 203 ie biogenic % and a 0-2 tricity prod	wer plan ste is 139 23.522 ⁻ 0, the ele waste fra 21% ther uction is , 2014).	ts can %, name TJ of he ectrical action is mal taken.	
nergy in- and Outputs explanation	 Ratios According to CBS 'Hernieuwbare En 10.130 TJ of net electricity production production divided by 77.631 TJ waste The National Energy Outlook (2016) efficiency is expected to reach 19% an assumed 55 % in all years. A study by CE (2010) gives on overvefficiency (for district heating). In the Furthermore 55% biogenic waste is as ETRI (2014) discusses the net electric Furthermore 55% biogenic waste is as In future years, the ratio of biogenic variantee is an assumed state is an assumed state is as 	O bar) (Brunner an nergie in Nederland n divided by 77.631 e input (CBS, 2018)) projects that was nd the thermal effi view of efficiencies table above a 15% ssumed. rical efficiency of a ssumed in all years vaste : non-biogen	d Rechberger,20 d 2017' the ratio TJ waste input In 2017, 54% o te incinerators w ciency 23%. In 2 of waste inciner conversion effic municipal solid This plant is us	of net electric (CBS, 2018). The f the energy con- vill have an electric of the electric rators in the Net ciency from en- waste incinerated for electric hange, for inst	ity production (be average ther content of waste actrical efficiency i rical efficiency i etherlands. The ergy input to he tor. In 2020, 20 ty production.	(i.e. elec. produce mal efficiency for e was renewable cy of 16% and a is expected to re- e waste incinera- eat for district h	ction minus s or the conver e (i.e. biogeni thermal effic each 20% and ators have a r heating is take e suggested r nd recycling.	40 bars) whilst for self-consumption rsion of waste in ic) (CBS, 2018). d the thermal eff net electrical effi en and a 20% eff net efficiency are	ossil fuels fired f) to energy inpu put to heat is 30 2020 (ECN, 201 iciency 20%. Th iciency of 10-27 iciency for elect	thermal po ut from wa 0%, namely .6b). In 203 le biogenic % and a 0-2 tricity prod 42% (ETRI 42% (ETRI	wer plan ste is 139 23.522 ⁻ 0, the ele waste fra 21% ther uction is , 2014).	its can %, nam TJ of he ectrical action i mal taken.	
nergy in- and Outputs explanation	 Ratios According to CBS 'Hernieuwbare Er 10.130 TJ of net electricity production production divided by 77.631 TJ waste The National Energy Outlook (2016 efficiency is expected to reach 19% ar assumed 55 % in all years. A study by CE (2010) gives on overv efficiency (for district heating). In the Furthermore 55% biogenic waste is as ETRI (2014) discusses the net electr Furthermore 55% biogenic waste is as 	O bar) (Brunner an nergie in Nederland n divided by 77.631 e input (CBS, 2018)) projects that was nd the thermal effi view of efficiencies table above a 15% ssumed. rical efficiency of a ssumed in all years	d Rechberger,20 d 2017' the ratio TJ waste input In 2017, 54% o te incinerators w ciency 23%. In 2 of waste inciner conversion effic municipal solid This plant is us	of net electric (CBS, 2018). Th f the energy co vill have an ele 050, the electric rators in the No ciency from en waste incinera ed for electric	ity production (be average ther content of waste actrical efficiency i rical efficiency i etherlands. The ergy input to he tor. In 2020, 20 ty production.	(i.e. elec. produce mal efficiency for e was renewable cy of 16% and a is expected to re- e waste incinera- eat for district h	ction minus s or the conver e (i.e. biogeni thermal effic each 20% and ators have a r leating is take e suggested r	40 bars) whilst for self-consumption rsion of waste in ic) (CBS, 2018). d the thermal eff net electrical effi en and a 20% eff net efficiency are	ossil fuels fired f) to energy inpu put to heat is 30 2020 (ECN, 201 iciency 20%. Th iciency of 10-27 iciency for elect	thermal po ut from wa 0%, namely .6b). In 203 ie biogenic % and a 0-2 tricity prod	wer plan ste is 139 23.522 ⁻ 0, the ele waste fra 21% ther uction is , 2014).	its can %, nam TJ of he ectrical action i mal taken.	
nergy in- and Outputs explanation	 Ratios According to CBS 'Hernieuwbare En 10.130 TJ of net electricity production production divided by 77.631 TJ waste The National Energy Outlook (2016) efficiency is expected to reach 19% an assumed 55 % in all years. A study by CE (2010) gives on overvefficiency (for district heating). In the Furthermore 55% biogenic waste is as ETRI (2014) discusses the net electric Furthermore 55% biogenic waste is as In future years, the ratio of biogenic variantee is an assumed state is an assumed state is as 	O bar) (Brunner an nergie in Nederland n divided by 77.631 e input (CBS, 2018)) projects that was nd the thermal effi view of efficiencies table above a 15% ssumed. rical efficiency of a ssumed in all years vaste : non-biogen	d Rechberger,20 d 2017' the ratio TJ waste input In 2017, 54% o te incinerators w ciency 23%. In 2 of waste inciner conversion effic municipal solid This plant is us	of net electric (CBS, 2018). The f the energy con- vill have an electric of the electric rators in the Net ciency from en- waste incinerated for electric hange, for inst	ity production (be average ther content of waste actrical efficiency i rical efficiency i etherlands. The ergy input to he tor. In 2020, 20 ty production.	(i.e. elec. produce mal efficiency for e was renewable cy of 16% and a is expected to re- e waste incinera- eat for district h	ction minus s or the conver e (i.e. biogeni thermal effic each 20% and ators have a r heating is take e suggested r nd recycling.	40 bars) whilst for self-consumption rsion of waste in ic) (CBS, 2018). d the thermal eff net electrical effi en and a 20% eff net efficiency are	ossil fuels fired f) to energy inpu put to heat is 30 2020 (ECN, 201 iciency 20%. Th iciency of 10-27 iciency for elect	thermal po ut from wa 0%, namely .6b). In 203 le biogenic % and a 0-2 tricity prod 42% (ETRI 42% (ETRI	ste is 139 723.522 ⁻ 0, the ele waste fra 21% ther uction is , 2014).	its can %, nam TJ of he ectrical action i mal taken.	
hergy in- and Outputs explanation	 Ratios According to CBS 'Hernieuwbare En 10.130 TJ of net electricity production production divided by 77.631 TJ waste The National Energy Outlook (2016) efficiency is expected to reach 19% an assumed 55 % in all years. A study by CE (2010) gives on overvefficiency (for district heating). In the Furthermore 55% biogenic waste is as ETRI (2014) discusses the net electric Furthermore 55% biogenic waste is as In future years, the ratio of biogenic variantee is an assumed state is an assumed state is as 	O bar) (Brunner an nergie in Nederland n divided by 77.631 e input (CBS, 2018)) projects that was nd the thermal effi view of efficiencies table above a 15% ssumed. rical efficiency of a ssumed in all years vaste : non-biogen	d Rechberger, 20 d 2017' the ratio . TJ waste input). In 2017, 54% o ste incinerators v ciency 23%. In 20 of waste inciner of waste inciner conversion effic municipal solid s. This plant is us ic waste could c	of net electric (CBS, 2018). The f the energy con- vill have an electric vill have an electric rators in the Net ciency from en- waste incinerate ed for electric hange, for inst Current	ity production (be average ther content of waste actrical efficiency i rical efficiency i etherlands. The ergy input to he tor. In 2020, 20 ty production. ance because o	(i.e. elec. produc mal efficiency for e was renewable cy of 16% and a is expected to re e waste incinera eat for district h 030 and 2050 the of more reuse ar	ction minus s or the conver e (i.e. biogeni thermal effic each 20% and ators have a r heating is take e suggested r nd recycling.	40 bars) whilst for self-consumption rsion of waste in ic) (CBS, 2018). diency of 27% by the thermal eff net electrical effi en and a 20% eff net efficiency are This effect howe	ossil fuels fired f b) to energy inpu put to heat is 30 2020 (ECN, 201 iciency 20%. Th iciency of 10-27 iciency for elect e 31%, 32% and ever is difficult to	thermal po ut from wa 0%, namely .6b). In 203 le biogenic % and a 0-2 tricity prod 42% (ETRI 42% (ETRI	ste is 139 723.522 ⁻ 0, the ele waste fra 21% ther uction is , 2014). and for t	its can %, nam TJ of he ectrical action i mal taken. his	
ATERIAL FLOWS (OPTIONAL) aterial flows aterial flows explanation	Ratios According to CBS 'Hernieuwbare Err 10.130 TJ of net electricity production production divided by 77.631 TJ waster. The National Energy Outlook (2016) efficiency is expected to reach 19% arr assumed 55 % in all years. A study by CE (2010) gives on overver efficiency (for district heating). In the Furthermore 55% biogenic waste is assert the electre Furthermore 55% biogenic waste is assert in future years, the ratio of biogenic vert is and the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the further is a s	O bar) (Brunner an hergie in Nederland h divided by 77.631 e input (CBS, 2018)) projects that was hd the thermal effi view of efficiencies table above a 15% ssumed. rical efficiency of a ssumed in all years vaste : non-biogen	d Rechberger, 20 d 2017' the ratio TJ waste input In 2017, 54% o the incinerators w ciency 23%. In 20 of waste inciner of waste inciner conversion effic municipal solid this plant is us ic waste could c	of net electric (CBS, 2018). The f the energy co vill have an electric cost, the electric rators in the Ne ciency from en waste incinerated for electric hange, for inst <u>Current</u>	ity production (be average ther content of waste ectrical efficiency i rical efficiency i etherlands. The ergy input to he tor. In 2020, 20 ty production. ance because o	(i.e. elec. produce mal efficiency for e was renewable cy of 16% and a - is expected to re- e waste incinerate eat for district h 030 and 2050 the of more reuse ar <i>Min</i>	ction minus s or the conver e (i.e. biogeni thermal effic each 20% and ators have a r heating is take e suggested r nd recycling.	40 bars) whilst for self-consumption rsion of waste in ic) (CBS, 2018). diency of 27% by d the thermal eff net electrical effi en and a 20% eff net efficiency are This effect howe	n) to energy inpuput to heat is 30 2020 (ECN, 201 iciency 20%. Th iciency of 10-27 iciency for elect e 31%, 32% and ever is difficult to Min	thermal po ut from wa 0%, namely .6b). In 203 le biogenic % and a 0-2 tricity prod 42% (ETRI 42% (ETRI	ste is 139 723.522 ⁻ 0, the ele waste fra 21% ther uction is , 2014). and for t	ts can %, nam TJ of he ectrical action i mal taken. his <u>Max</u>	
nergy in- and Outputs explanation IATERIAL FLOWS (OPTIONAL) Naterial flows Naterial flows explanation	Ratios According to CBS 'Hernieuwbare Err 10.130 TJ of net electricity production production divided by 77.631 TJ waster. The National Energy Outlook (2016) efficiency is expected to reach 19% arr assumed 55 % in all years. A study by CE (2010) gives on overver efficiency (for district heating). In the Furthermore 55% biogenic waste is assert the electre Furthermore 55% biogenic waste is assert in future years, the ratio of biogenic vert is and the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the material in the further is a series of the further is a s	O bar) (Brunner an hergie in Nederland h divided by 77.631 e input (CBS, 2018)) projects that was hd the thermal effi view of efficiencies table above a 15% ssumed. rical efficiency of a ssumed in all years vaste : non-biogen	d Rechberger, 20 d 2017' the ratio TJ waste input In 2017, 54% o the incinerators w ciency 23%. In 20 of waste inciner of waste inciner conversion effic municipal solid this plant is us ic waste could c	of net electric (CBS, 2018). The f the energy co vill have an electric cost, the electric rators in the Ne ciency from en waste incinerated for electric hange, for inst <u>Current</u>	ity production (be average ther content of waste ectrical efficiency i rical efficiency i etherlands. The ergy input to he tor. In 2020, 20 ty production. ance because o	(i.e. elec. produce mal efficiency for e was renewable cy of 16% and a - is expected to re- e waste incinerate eat for district h 030 and 2050 the of more reuse ar <i>Min</i>	ction minus s or the conver e (i.e. biogeni thermal effic each 20% and ators have a r heating is take e suggested r nd recycling.	40 bars) whilst for self-consumption rsion of waste in ic) (CBS, 2018). diency of 27% by d the thermal eff net electrical effi en and a 20% eff net efficiency are This effect howe	n) to energy inpuput to heat is 30 2020 (ECN, 201 iciency 20%. Th iciency of 10-27 iciency for elect e 31%, 32% and ever is difficult to Min	thermal po ut from wa 0%, namely .6b). In 203 le biogenic % and a 0-2 tricity prod 42% (ETRI 42% (ETRI	ste is 139 723.522 ⁻ 0, the ele waste fra 21% ther uction is , 2014). and for t	ts can %, nam TJ of he ectrical action i mal taken. his <u>Max</u>	
nergy in- and Outputs explanation	Ratios According to CBS 'Hernieuwbare Err 10.130 TJ of net electricity production production divided by 77.631 TJ wastered. The National Energy Outlook (2016 efficiency is expected to reach 19% arrassumed 55 % in all years. A study by CE (2010) gives on overvefficiency (for district heating). In the Furthermore 55% biogenic waste is as ETRI (2014) discusses the net electre Furthermore 55% biogenic waste is as 	O bar) (Brunner an hergie in Nederland h divided by 77.631 e input (CBS, 2018)) projects that was hd the thermal effi view of efficiencies table above a 15% ssumed. rical efficiency of a ssumed in all years vaste : non-biogen Unit	d Rechberger, 20 d 2017' the ratio . TJ waste input). In 2017, 54% o ste incinerators w ciency 23%. In 20 of waste inciner of waste inciner conversion effic municipal solid s. This plant is us ic waste could c	015). of net electric (CBS, 2018). The f the energy con- vill have an electric rators in the Nec- ciency from en- waste incinerated for electric hange, for inst Current -	ity production (be average ther content of waste ectrical efficiency i rical efficiency i etherlands. The ergy input to he tor. In 2020, 20 ty production. ance because o	(i.e. elec. produce mal efficiency for e was renewable cy of 16% and a - is expected to re- e waste incinerate eat for district h 030 and 2050 the of more reuse ar <i>Min</i>	ction minus s or the conver e (i.e. biogeni thermal effic each 20% and ators have a r leating is take e suggested r nd recycling. 2030 -	40 bars) whilst for self-consumption rsion of waste in ic) (CBS, 2018). diency of 27% by d the thermal eff net electrical effi en and a 20% eff net efficiency are This effect howe	n) to energy inpuput to heat is 30 2020 (ECN, 201 iciency 20%. Th iciency of 10-27 iciency for elect e 31%, 32% and ever is difficult to Min	thermal po ut from wa 0%, namely .6b). In 203 le biogenic % and a 0-2 tricity prod 42% (ETRI 0 quantify 2050 	ste is 139 723.522 ⁻⁷ 0, the ele waste fra 21% ther uction is , 2014). and for t	ts can %, nam TJ of he ectrical action mal taken. his	
nergy in- and Outputs explanation IATERIAL FLOWS (OPTIONAL) Naterial flows Naterial flows explanation MISSIONS (Non-fuel/energy-related emission)	Ratios According to CBS 'Hernieuwbare Err 10.130 TJ of net electricity production production divided by 77.631 TJ wastered. The National Energy Outlook (2016 efficiency is expected to reach 19% arrassumed 55 % in all years. A study by CE (2010) gives on overvefficiency (for district heating). In the Furthermore 55% biogenic waste is as ETRI (2014) discusses the net electre Furthermore 55% biogenic waste is as 	O bar) (Brunner an hergie in Nederland h divided by 77.631 e input (CBS, 2018)) projects that was hd the thermal effi view of efficiencies table above a 15% ssumed. rical efficiency of a ssumed in all years vaste : non-biogen Unit	d Rechberger, 20 d 2017' the ratio TJ waste input In 2017, 54% of the incinerators will ciency 23%. In 20 of waste inciner of waste inciner conversion efficient municipal solid s. This plant is us ic waste could c	of net electric (CBS, 2018). The f the energy con- vill have an electric of the electric rators in the Nec- ciency from energy waste incinerated for electric hange, for inst Current -	ity production (be average ther pontent of waster octrical efficiency i rical efficiency i etherlands. The ergy input to he tor. In 2020, 20 ty production. ance because of <u>- Max</u> <u>- Max</u>	(i.e. elec. produce mal efficiency for e was renewable cy of 16% and a fis is expected to re- e waste incinerate eat for district h 030 and 2050 the of more reuse ar <i>Min</i>	ction minus s or the conver e (i.e. biogeni thermal effic each 20% and ators have a r leating is take e suggested r nd recycling. 2030 -	40 bars) whilst for self-consumption rsion of waste in ic) (CBS, 2018). diency of 27% by d the thermal eff net electrical effi en and a 20% eff net efficiency are This effect howe 	a) to energy input put to heat is 30 2020 (ECN, 201 iciency 20%. The iciency of 10-27 iciency for elected as 31%, 32% and ever is difficult to min	thermal po ut from wa 0%, namely .6b). In 203 le biogenic % and a 0-2 tricity prod 42% (ETRI 0 quantify 2050 	ste is 139 23.522 - 0, the ele waste fra 21% ther uction is , 2014). and for the and for the and and for the and and and for the and and and for the and and and and and and and and	ts can %, nam TJ of h ectrica action mal taken. his <u>Max</u>	
nergy in- and Outputs explanation IATERIAL FLOWS (OPTIONAL) Iaterial flows Iaterial flows explanation MISSIONS (Non-fuel/energy-related em	Ratios According to CBS 'Hernieuwbare Err 10.130 TJ of net electricity production production divided by 77.631 TJ wastered. The National Energy Outlook (2016 efficiency is expected to reach 19% arrassumed 55 % in all years. A study by CE (2010) gives on overvefficiency (for district heating). In the Furthermore 55% biogenic waste is as ETRI (2014) discusses the net electre Furthermore 55% biogenic waste is as 	O bar) (Brunner an hergie in Nederland h divided by 77.631 e input (CBS, 2018)) projects that was hd the thermal effi view of efficiencies table above a 15% ssumed. rical efficiency of a ssumed in all years vaste : non-biogen Unit	Ad Rechberger, 20 d 2017' the ratio TJ waste input In 2017, 54% of the incinerators will ciency 23%. In 20 of waste incinerators of waste could c Min Min Min	of net electric (CBS, 2018). The f the energy con- vill have an electric of the electric rators in the Nec- ciency from energy waste incinerated for electric hange, for inst Current -	ity production (be average ther pontent of waster octrical efficiency i etherlands. The ergy input to he tor. In 2020, 20 ty production. ance because of 	(i.e. elec. produce mal efficiency for e was renewable cy of 16% and a for is expected to re- e waste incinerate eat for district h 030 and 2050 the of more reuse ar <i>Min</i> <i>Min</i> <i>Min</i>	ction minus s or the conver e (i.e. biogeni thermal effic each 20% and ators have a r leating is take e suggested r nd recycling. 2030 -	40 bars) whilst for self-consumption rsion of waste in ic) (CBS, 2018). diency of 27% by d the thermal effi- net electrical effi- en and a 20% effi- net efficiency are max - <i>Max</i> - <i>Max</i> - <i>Max</i> - <i>Max</i> -	b) to energy inpurpleter in the energy inpurpleter is 30 2020 (ECN, 201 iciency 20%. The energy inpurpleter is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 201 iciency for electer is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30 20 and ever is difficult to heat is 30 2020 (ECN, 30	thermal po ut from wa 0%, namely .6b). In 203 le biogenic % and a 0-2 tricity prod 42% (ETRI 0 quantify 2050 	ste is 139 23.522 - 0, the ele waste fra 21% ther uction is , 2014). and for the and for the and for the and for the and for the and for the and for th	ts can %, nam TJ of he ectrical action mal taken. Max Max Max	
nergy in- and Outputs explanation IATERIAL FLOWS (OPTIONAL) laterial flows laterial flows explanation MISSIONS (Non-fuel/energy-related em	Ratios According to CBS 'Hernieuwbare Err 10.130 TJ of net electricity production production divided by 77.631 TJ wastered. The National Energy Outlook (2016 efficiency is expected to reach 19% arrassumed 55 % in all years. A study by CE (2010) gives on overvefficiency (for district heating). In the Furthermore 55% biogenic waste is as ETRI (2014) discusses the net electre Furthermore 55% biogenic waste is as 	O bar) (Brunner an hergie in Nederland h divided by 77.631 e input (CBS, 2018)) projects that was hd the thermal effi view of efficiencies table above a 15% ssumed. rical efficiency of a ssumed in all years vaste : non-biogen Unit	Ad Rechberger, 20 d 2017' the ratio TJ waste input In 2017, 54% of the incinerators will ciency 23%. In 20 of waste incinerators of waste incinerators municipal solid in Min Min	of net electric (CBS, 2018). The f the energy con- vill have an electric of the electric rators in the Nec- ciency from energy waste incinerated for electric hange, for inst Current -	ity production (be average ther pontent of waster octrical efficiency i rical efficiency i etherlands. The ergy input to he tor. In 2020, 20 ty production. ance because of 	(i.e. elec. produce mal efficiency for e was renewable cy of 16% and a for is expected to re- e waste incinerate eat for district h 030 and 2050 the of more reuse ar <i>Min</i> <i>Min</i>	ction minus s or the conver e (i.e. biogeni thermal effic each 20% and ators have a r leating is take e suggested r nd recycling. 2030 -	40 bars) whilst for self-consumption rsion of waste in ic) (CBS, 2018). diency of 27% by d the thermal eff net electrical effi en and a 20% eff net efficiency are This effect howe — — — Max — — — — Max — — — — Max	b) to energy inpurplet to heat is 30 2020 (ECN, 201 iciency 20%. The iciency of 10-27 iciency for elected at 31%, 32% and ever is difficult to min Min Min Min Min	thermal po ut from wa 0%, namely .6b). In 203 le biogenic % and a 0-2 tricity prod 42% (ETRI 0 quantify 2050 -	ste is 139 23.522 - 0, the ele waste fra 21% ther uction is , 2014). and for the and for the and for the and for the and for the and for the and for th	ts can %, nam TJ of he ectrical action mal taken. his	
nergy in- and Outputs explanation IATERIAL FLOWS (OPTIONAL) Naterial flows Naterial flows explanation	Ratios According to CBS 'Hernieuwbare Err 10.130 TJ of net electricity production production divided by 77.631 TJ wastered. The National Energy Outlook (2016 efficiency is expected to reach 19% arrassumed 55 % in all years. A study by CE (2010) gives on overvefficiency (for district heating). In the Furthermore 55% biogenic waste is as ETRI (2014) discusses the net electre Furthermore 55% biogenic waste is as 	O bar) (Brunner an hergie in Nederland h divided by 77.631 e input (CBS, 2018)) projects that was hd the thermal effi view of efficiencies table above a 15% ssumed. rical efficiency of a ssumed in all years vaste : non-biogen Unit	Ad Rechberger, 20 d 2017' the ratio TJ waste input In 2017, 54% of the incinerators with ciency 23%. In 20 of waste incinerators of waste could c Min Min Min	015). of net electric (CBS, 2018). The f the energy con- vill have an electric vill have an electric rators in the Net ciency from energy waste incinerate ed for electric hange, for inst Current - - - - - - - - - - - - -	ity production (be average ther pontent of waster octrical efficiency i etherlands. The ergy input to he tor. In 2020, 20 ty production. ance because of max - Max - Max - Max - Max - Max - Max - Max - Max - Max - Max - Max	(i.e. elec. production mal efficiency for e was renewable cy of 16% and a for is expected to re- e waste incinera- eat for district h 030 and 2050 the of more reuse ar Min Min Min Min Min	ction minus s or the conver e (i.e. biogeni thermal effic each 20% and ators have a r leating is take e suggested r nd recycling. 2030 - - - - - - - -	40 bars) whilst for self-consumption rsion of waste in ic) (CBS, 2018). iency of 27% by d the thermal eff net electrical effi en and a 20% eff net efficiency are This effect howe This effect howe Max - Max - Max - Max - Max - Max - Max	ossil fuels fired find find find find find find find fin	thermal po ut from wa 0%, namely .6b). In 203 .e biogenic % and a 0-2 tricity prod 42% (ETRI, 	ste is 139 7 23.522 ⁻⁷ 0, the ele waste fra 21% ther uction is , 2014). and for t	ts can %, nam TJ of he ectrical action i mal taken. <i>mal</i> taken. <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>a</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i> <i>max</i>	

OTHER										
Parameter	Unit	Current			2030			2050		
Loss of electricity production per unit of	GJe/GJth			0.20			0.20			0.2
heat produced		0.09	-	0.20	0.09	-	0.20	0.09	-	0.20
Water withdrawal	liters/kWh			3.3			3.3			3.
		3.3	-	3.3	3.3	-	3.3	3.3	-	3.3
Water consumption	liters/kWh			2.1			2.1			2.
		2.1	-	2.1	2.1	-	2.1	2.1	-	2.
				-			-			
		Min	-	Мах	Min	-	Max	Min	-	Max
Explanation	 loss of electricity production (ECN, 2016a). Thus, the hig GJe/GJth at 80 °C (ECN, 2011). According to ETRI the water withdrawal is equal to 3,3 refers to the water that is not returned to the water systematics. 	3 liters per kWhe	•	-						
REFERENCES AND SOURCES										
ECN (2011). Restwarmtebenutting - Poten European Comission (2018) Final Draft: Be <http: eippcb.jrc.ec.europa.eu="" reference<br="">ETRI (2014). Carlsson J, Energy Technolog JRC92496 https://setis.ec.europa.eu/related-jrc-acti ECN (2006) Factsheet - Afvalverbrandings CE (2010). Beter één AVI met een hoog re Ecofys (2014). Warmteladder. Available at ECN (2016a). MKBA Tracé 2 Warmtenet N ECN (2016b) National Energy Outlook 201 ECN (2017a). Monitoring Warmte ECN (2017b). Nationale Energieverkenning</http:>	alverwerking in Nederland: Gegevens 2016 / Werkgroep / atiëlen, besparing, alternatieven est Available Techniques (BAT) Reference Document for We/BREF/WI/WI_BREF_FD_Black_Watermark.pdf> y Reference Indicator projections for 2010-2050, 2014 Ed vities/jrc-setis-reports/etri-2014 installaties (AVI'S) and corresponding Excel data. Factshe ndement dan één dichtbij - Hoeveel transport van afval is t: https://www.ecofys.com/files/files/ecofys-2014-warmf ijmegen .6 - modeling system	Waste Incineratio dition, EUR 26950 eet available at: h s nuttig voor een teladder.pdf	n EN, Publicatio ttps://www.e hoger energie	ons Office of the cn.nl/fileadmin, erendement?	e European Uni /ecn/units/bs/C				3-6, doi: 10.2	790/057687,
ECN (2017c) Warmteladder voor MRA. Av Energy Matters (2012). Memo - Kentallen PBL (2017). Functioneel ontwerp VESTA 3		ites/17/2017/07,	/Warmteladde	er-voor-MRA.pc	lf					