TECHNOLOGY FACTSHEET

COAL-FIRED POWER PLANT Date of factsheet Author									
	11-12-2018								
-	Robin Niessink								
Sector	Built environment								
ETS / Non-ETS	Other sectors ETS								
Type of Technology	СНР								
Description	 Working of the Technology A coal-fired power plant can be a comproduce high pressure steam which towers. From the drain of a steam the focuses on a CHP plant that delivers Main components Components of a coal-fired power plant feedwater heaters; commonly used ash conveyor. 	n is expanded in a curbine heat can b s heat to the built plant for the prod	turbine to generate electricity be fed into a district heating ne environment. A CHP plant wit uction of electricity and distric	v using a generato etwork. Heat can l thout carbon capt ct heating typicall	r. Residual heat is cooled dow be supplied to different secto ture and storage (CCS) is cons y consist of fuel storage/fuel	wn by using a co ors such as the b sidered in this fa feed, steam boi	ooling technique, ouilt environmen actsheet. iler, economiser,	for instance co t or industry. Th /heat exchanged	ooling his factshee r (i.e.
	Energy production related aspects The downside of utilizing heat for d (GJe/GJth supplied) depend on the Coal-fired CHP plants are equipped the costs presented in this factshee	temperature of h with flue gas clea	eat disconnection. Typical loss	ses are included ir	this factsheet.				
TRL level 2020	TRL 9 The technology is already being app Geertruidenberg (Noord-Brabant), s	-			•		ired CHP plant (cofiring biomass	s) located in
TECHNICAL DIMENSIONS					V. I I. D				
Capacity	Functional Unit MWe				Value and Range	9			900
				200	_				1,60
	MWe	NL	Current		2030			2050	
Potential	1		Min -	- Max	Min -	- Max	Min	. I	- Max
Market share	%	Share of final	IVIIII -	•	Phase out of coal Dutch clima	-	Phase out of co	- al Dutch climate	
		heat demand	0.55 -	0.55		-	-	-	-
Capacity utlization factor						0.83			
Full-load running hours per year Unit of Activity	PJe/year					7,250		23.5	
Technical lifetime (years)						30		2010	
Progress ratio						-			
Hourly profile Explanation	Yes	of Cool fired Down	r Diante						
	Typical Electric and Heat Capacity C The electrical capacity of different s average. Full load hours per year de up times; it typically has more than hours this translates to a capacity u plant with a capacity of 900 MWe a seasons there is a (much) lower hea supplied per year (ECN, 2011). On a	supercritical pulve epend on the mar 7.000 full load ho utilitization factor and 7.250 full load at demand. Heat is	rised coal power plants in OEC ginal production costs (the me ours per year for electricity pro of 83%. IEA (2010) indicates 7 hours produces 23 PJe per ye s produced when the plant pro	erit order). A coal- oduction (Seebreg 5-85% as capacity ear. Full load hours oduces electricity,	fired CHP plant runs base loa ts and van Dril, 2010; Energy utilization factor for a fluidis s for heat delivery are not the but due to limited overlap w	ad, because of it Matters, 2012; sed bed combus e same. Indeed, vith the heat de	s low marginal c IEA ETSAP, 2010 stion coal-fired C heat demand p mand 30 to 45%	osts and relative)). In case of 7.2 HP (IEA ETSAP, 2 eaks in winter a of the available	ely long sta 50 full load 2010). A CH nd in other e heat can b
	The electrical capacity of different s average. Full load hours per year de up times; it typically has more than hours this translates to a capacity u plant with a capacity of 900 MWe a seasons there is a (much) lower hea	supercritical pulve epend on the marg 7.000 full load ho at lilitization factor and 7.250 full load at demand. Heat is average 25% heat ssuming 4.500 full he Netherlands uilt environment in pal waste incineration nercentrale (ECN, ential buildings in 2 he remainder bior plants under the D	rised coal power plants in OEC ginal production costs (the me ours per year for electricity pro of 83%. IEA (2010) indicates 7 hours produces 23 PJe per yes s produced when the plant pro losses can be assumed in a he load hours (based on Energy n the Netherlands is supplied y tors, biomass heat sources, an 2017). The remaining 5% is su 2015 (ECN, 2017) which mean mass, the share would be 0,3% outch climate agreement.	erit order). A coal- oduction (Seebreg 5-85% as capacity ear. Full load hour oduces electricity, at network (ECN, Matters, 2012), th with district heatin d coal-fired CHP a upplied by other h s the share of hea 6. The coal share v	fired CHP plant runs base loa ts and van Dril, 2010; Energy rutilization factor for a fluidis s for heat delivery are not the but due to limited overlap w 2017). For example, in case o ne thermal output capacity for ng in 2015 (ECN, 2017). Most as heat sources (ECN, 2017). eat sources such as back up h t supplied by district heating will likely decrease further in o	ad, because of it Matters, 2012; sed bed combus e same. Indeed, with the heat den of 2,6 PJth heat den or district heatin t of heat is supp The Amernet su boilers. The fina g using coal-fired coming years du	is low marginal c IEA ETSAP, 2010 stion coal-fired C heat demand p mand 30 to 45% demand per yea mg would be about pplied about 2,7 I heat demand c power plants is ue to increased c	osts and relative D). In case of 7.2 HP (IEA ETSAP, 1) eaks in winter a of the available r, a CHP plant n ut 210 MWth. cale heat netwo 7 PJ of heat in 20 of the built envir 0,6%. In case h cofiring of bioma	ely long sta 50 full load 2010). A CH nd in other e heat can b eeds to orks which 015, out of ronment is alf of fuel ass and a
COSTS	The electrical capacity of different s average. Full load hours per year de up times; it typically has more than hours this translates to a capacity u plant with a capacity of 900 MWe a seasons there is a (much) lower hea supplied per year (ECN, 2011). On a produce about 3,4 PJth per year. As Heat Supply by Coal-fired CHP In Th About 4% of heat demand in the bu have natural gas-fired CHP, municip which 95% was coming from the An 463 PJ for dwellings and non-reside input in Amercentrale is coal, and th phase out of Dutch coal-fired CHP p Technical Lifetime Coal-fired Power ECN indicates a technical lifetime of	supercritical pulve epend on the marg 7.000 full load ho at lilitization factor and 7.250 full load at demand. Heat is average 25% heat ssuming 4.500 full he Netherlands uilt environment in pal waste incineration nercentrale (ECN, ential buildings in 2 he remainder bior plants under the D	rised coal power plants in OEC ginal production costs (the me ours per year for electricity pro of 83%. IEA (2010) indicates 7 hours produces 23 PJe per yes s produced when the plant pro losses can be assumed in a he load hours (based on Energy n the Netherlands is supplied y tors, biomass heat sources, an 2017). The remaining 5% is su 2015 (ECN, 2017) which mean mass, the share would be 0,3% outch climate agreement.	erit order). A coal- oduction (Seebreg 5-85% as capacity ear. Full load hour oduces electricity, at network (ECN, Matters, 2012), th with district heatin d coal-fired CHP a upplied by other h s the share of hea 6. The coal share v	fired CHP plant runs base loa ts and van Dril, 2010; Energy rutilization factor for a fluidis s for heat delivery are not the but due to limited overlap w 2017). For example, in case o ne thermal output capacity for ng in 2015 (ECN, 2017). Most as heat sources (ECN, 2017). eat sources such as back up h t supplied by district heating will likely decrease further in o	ad, because of it Matters, 2012; sed bed combus e same. Indeed, with the heat den of 2,6 PJth heat den or district heatin t of heat is supp The Amernet su boilers. The fina g using coal-fired coming years du	is low marginal c IEA ETSAP, 2010 stion coal-fired C heat demand p mand 30 to 45% demand per yea mg would be about pplied about 2,7 I heat demand c power plants is ue to increased c	osts and relative D). In case of 7.2 HP (IEA ETSAP, 1) eaks in winter a of the available r, a CHP plant n ut 210 MWth. cale heat netwo 7 PJ of heat in 20 of the built envir 0,6%. In case h cofiring of bioma	ely long sta 50 full load 2010). A CH nd in other e heat can b eeds to orks which 015, out of ronment is alf of fuel ass and a
COSTS	The electrical capacity of different s average. Full load hours per year de up times; it typically has more than hours this translates to a capacity u plant with a capacity of 900 MWe a seasons there is a (much) lower hea supplied per year (ECN, 2011). On a produce about 3,4 PJth per year. As Heat Supply by Coal-fired CHP In Th About 4% of heat demand in the bu have natural gas-fired CHP, municip which 95% was coming from the An 463 PJ for dwellings and non-reside input in Amercentrale is coal, and th phase out of Dutch coal-fired Power ECN indicates a technical lifetime of 2015	supercritical pulve epend on the marg 7.000 full load ho at lilitization factor and 7.250 full load at demand. Heat is average 25% heat ssuming 4.500 full the Netherlands uilt environment in coal waste incineration mercentrale (ECN, ential buildings in 2 he remainder bior colants under the D of Plants f 30 years for a co	rised coal power plants in OEC ginal production costs (the me ours per year for electricity pro of 83%. IEA (2010) indicates 7 hours produces 23 PJe per yes s produced when the plant pro losses can be assumed in a he load hours (based on Energy n the Netherlands is supplied y tors, biomass heat sources, an 2017). The remaining 5% is su 2015 (ECN, 2017) which mean mass, the share would be 0,3% outch climate agreement.	erit order). A coal- oduction (Seebreg 5-85% as capacity ear. Full load hour oduces electricity, at network (ECN, Matters, 2012), th with district heatin d coal-fired CHP a upplied by other h s the share of hea 6. The coal share v	fired CHP plant runs base loa ts and van Dril, 2010; Energy rutilization factor for a fluidis s for heat delivery are not the but due to limited overlap w 2017). For example, in case o ne thermal output capacity for ng in 2015 (ECN, 2017). Most as heat sources (ECN, 2017). eat sources such as back up h t supplied by district heating will likely decrease further in o	ad, because of it Matters, 2012; sed bed combus e same. Indeed, with the heat den of 2,6 PJth heat den or district heatin t of heat is supp The Amernet su boilers. The fina g using coal-fired coming years du	is low marginal c IEA ETSAP, 2010 stion coal-fired C heat demand p mand 30 to 45% demand per yea mg would be about pplied about 2,7 I heat demand c power plants is ue to increased c	osts and relative D). In case of 7.2 HP (IEA ETSAP, 1) eaks in winter a of the available r, a CHP plant n ut 210 MWth. cale heat netwo 7 PJ of heat in 20 of the built envir 0,6%. In case h cofiring of bioma	ely long sta 50 full load 2010). A CH nd in other e heat can H eeds to orks which 015, out of ronment is alf of fuel ass and a
COSTS Year of Euro	The electrical capacity of different s average. Full load hours per year de up times; it typically has more than hours this translates to a capacity u plant with a capacity of 900 MWe a seasons there is a (much) lower hea supplied per year (ECN, 2011). On a produce about 3,4 PJth per year. As Heat Supply by Coal-fired CHP In Th About 4% of heat demand in the bu have natural gas-fired CHP, municip which 95% was coming from the An 463 PJ for dwellings and non-reside input in Amercentrale is coal, and th phase out of Dutch coal-fired CHP p Technical Lifetime Coal-fired Power ECN indicates a technical lifetime of	supercritical pulve epend on the marg 7.000 full load ho at lilitization factor and 7.250 full load at demand. Heat is average 25% heat ssuming 4.500 full the Netherlands uilt environment in coal waste incineration mercentrale (ECN, ential buildings in 2 he remainder bior colants under the D of Plants f 30 years for a co	rised coal power plants in OEC ginal production costs (the me ours per year for electricity pro of 83%. IEA (2010) indicates 75 hours produces 23 PJe per year s produced when the plant pro losses can be assumed in a he load hours (based on Energy n the Netherlands is supplied w tors, biomass heat sources, an 2017). The remaining 5% is su 2015 (ECN, 2017) which mean mass, the share would be 0,3% outch climate agreement.	erit order). A coal- oduction (Seebreg 5-85% as capacity ear. Full load hour oduces electricity, at network (ECN, Matters, 2012), th with district heatin d coal-fired CHP a upplied by other h s the share of hea 6. The coal share v	fired CHP plant runs base loa ts and van Dril, 2010; Energy rutilization factor for a fluidis s for heat delivery are not the but due to limited overlap w 2017). For example, in case o ne thermal output capacity for ng in 2015 (ECN, 2017). Most as heat sources (ECN, 2017). eat sources such as back up b it supplied by district heating will likely decrease further in o	ad, because of it Matters, 2012; sed bed combus e same. Indeed, with the heat den of 2,6 PJth heat den or district heatin t of heat is supp The Amernet su boilers. The fina g using coal-fired coming years du	is low marginal c IEA ETSAP, 2010 stion coal-fired C heat demand p mand 30 to 45% demand per yea mg would be about pplied about 2,7 I heat demand c power plants is ue to increased c	osts and relative). In case of 7.2 HP (IEA ETSAP, 2 eaks in winter a of the available r, a CHP plant n ut 210 MWth. cale heat netwo 7 PJ of heat in 20 of the built envir 0,6%. In case h cofiring of bioma CHP (ETRI, 2014	ely long sta 50 full load 2010). A CH nd in other e heat can b eeds to orks which 015, out of ronment is alf of fuel ass and a 4).
COSTS Year of Euro nvestment costs	The electrical capacity of different s average. Full load hours per year de up times; it typically has more than hours this translates to a capacity u plant with a capacity of 900 MWe a seasons there is a (much) lower hea supplied per year (ECN, 2011). On a produce about 3,4 PJth per year. As Heat Supply by Coal-fired CHP In Th About 4% of heat demand in the bu have natural gas-fired CHP, municip which 95% was coming from the An 463 PJ for dwellings and non-reside input in Amercentrale is coal, and th phase out of Dutch coal-fired CHP p Technical Lifetime Coal-fired Power ECN indicates a technical lifetime of 2015 2015 2015	supercritical pulve epend on the marg 7.000 full load ho at lilitization factor and 7.250 full load at demand. Heat is average 25% heat ssuming 4.500 full the Netherlands uilt environment in coal waste incineration mercentrale (ECN, ential buildings in 2 he remainder bior colants under the D of Plants f 30 years for a co	rised coal power plants in OEC ginal production costs (the me ours per year for electricity pro of 83%. IEA (2010) indicates 75 hours produces 23 PJe per year s produced when the plant pro losses can be assumed in a he load hours (based on Energy n the Netherlands is supplied w tors, biomass heat sources, an 2017). The remaining 5% is su 2015 (ECN, 2017) which mean mass, the share would be 0,3% outch climate agreement.	erit order). A coal- oduction (Seebreg 5-85% as capacity ear. Full load hours oduces electricity, at network (ECN, Matters, 2012), th with district heati nd coal-fired CHP a upplied by other h s the share of hea 6. The coal share v	fired CHP plant runs base loa ts and van Dril, 2010; Energy rutilization factor for a fluidis s for heat delivery are not the but due to limited overlap w 2017). For example, in case o ne thermal output capacity for ng in 2015 (ECN, 2017). Most as heat sources (ECN, 2017). eat sources such as back up b it supplied by district heating will likely decrease further in o	ad, because of it Matters, 2012; sed bed combus e same. Indeed, with the heat der of 2,6 PJth heat der or district heatin t of heat is supp The Amernet su boilers. The fina g using coal-fired coming years du Steam turbine of	is low marginal c IEA ETSAP, 2010 stion coal-fired C heat demand p mand 30 to 45% demand per yea mg would be about pplied about 2,7 I heat demand c power plants is ue to increased c	osts and relative). In case of 7.2 HP (IEA ETSAP, 2 eaks in winter a of the available r, a CHP plant n ut 210 MWth. cale heat netwo 7 PJ of heat in 20 of the built envir 0,6%. In case h cofiring of bioma CHP (ETRI, 2014	ely long sta (50 full load 2010). A CH nd in other e heat can b eeds to orks which 015, out of ronment is alf of fuel ass and a 4). 2.0
COSTS Year of Euro Investment costs	The electrical capacity of different s average. Full load hours per year de up times; it typically has more than hours this translates to a capacity up lant with a capacity of 900 MWe a seasons there is a (much) lower hea supplied per year (ECN, 2011). On a produce about 3,4 PJth per year. As Heat Supply by Coal-fired CHP In The About 4% of heat demand in the bu have natural gas-fired CHP, municip which 95% was coming from the Am 463 PJ for dwellings and non-reside input in Amercentrale is coal, and the phase out of Dutch coal-fired CHP p Technical Lifetime Coal-fired Power ECN indicates a technical lifetime of 2015 Euro per Functional U	supercritical pulve epend on the marg 7.000 full load ho at lilitization factor and 7.250 full load at demand. Heat is average 25% heat ssuming 4.500 full the Netherlands uilt environment in coal waste incineration mercentrale (ECN, ential buildings in 2 he remainder bior colants under the D of Plants f 30 years for a co	rised coal power plants in OEC ginal production costs (the me purs per year for electricity pro of 83%. IEA (2010) indicates 75 hours produces 23 PJe per years produced when the plant pro losses can be assumed in a he load hours (based on Energy n the Netherlands is supplied w tors, biomass heat sources, an 2017). The remaining 5% is su 2015 (ECN, 2017) which mean mass, the share would be 0,3% butch climate agreement. al-fired CHP (ECN, 2011). ETRI	erit order). A coal- oduction (Seebreg 5-85% as capacity ear. Full load hours oduces electricity, at network (ECN, Matters, 2012), th with district heati ind coal-fired CHP a upplied by other h s the share of hea 6. The coal share w indicates a techn 2.04	fired CHP plant runs base loa ts and van Dril, 2010; Energy rutilization factor for a fluidis s for heat delivery are not the but due to limited overlap w 2017). For example, in case of the thermal output capacity for ang in 2015 (ECN, 2017). Most as heat sources (ECN, 2017). Most as heat sources such as back up b it supplied by district heating will likely decrease further in o ical lifetime of 35 years for a 2030	ad, because of it Matters, 2012; sed bed combus e same. Indeed, with the heat der of 2,6 PJth heat der or district heatin t of heat is supp The Amernet su boilers. The fina g using coal-fired coming years du Steam turbine of 2.04	is low marginal c IEA ETSAP, 2010 stion coal-fired C heat demand p mand 30 to 45% demand per yea mg would be about lied with large so upplied about 2,7 l heat demand c d power plants is ue to increased c	osts and relative). In case of 7.2 HP (IEA ETSAP, 2 eaks in winter a of the available r, a CHP plant n ut 210 MWth. cale heat netwo 7 PJ of heat in 20 of the built envir 0,6%. In case h cofiring of bioma CHP (ETRI, 2014	ely long sta (50 full load 2010). A CH nd in other e heat can b eeds to orks which 015, out of ronment is alf of fuel ass and a 4). 2.0
COSTS /ear of Euro nvestment costs Dther costs per year Fixed operational costs per year	The electrical capacity of different s average. Full load hours per year de up times; it typically has more than hours this translates to a capacity u plant with a capacity of 900 MWe a seasons there is a (much) lower hea supplied per year (ECN, 2011). On a produce about 3,4 PJth per year. As Heat Supply by Coal-fired CHP In Th About 4% of heat demand in the bu have natural gas-fired CHP, municip which 95% was coming from the An 463 PJ for dwellings and non-reside input in Amercentrale is coal, and th phase out of Dutch coal-fired CHP p Technical Lifetime Coal-fired Power ECN indicates a technical lifetime of 2015 2015 2015	supercritical pulve epend on the marg 7.000 full load ho at lilitization factor and 7.250 full load at demand. Heat is average 25% heat ssuming 4.500 full the Netherlands uilt environment in coal waste incineration mercentrale (ECN, ential buildings in 2 he remainder bior colants under the D of Plants f 30 years for a co	rised coal power plants in OEC ginal production costs (the me ours per year for electricity pro of 83%. IEA (2010) indicates 75 hours produces 23 PJe per yes s produced when the plant pro losses can be assumed in a he load hours (based on Energy n the Netherlands is supplied v tors, biomass heat sources, an 2017). The remaining 5% is su 2015 (ECN, 2017) which mean mass, the share would be 0,3% outch climate agreement. al-fired CHP (ECN, 2011). ETRI 1.44 -	erit order). A coal- oduction (Seebreg 5-85% as capacity ear. Full load hours oduces electricity, at network (ECN, Matters, 2012), th with district heatin d coal-fired CHP a upplied by other h s the share of heat 6. The coal share w indicates a techn 2.04 2.86 - Max 0.05	fired CHP plant runs base loa ts and van Dril, 2010; Energy rutilization factor for a fluidis s for heat delivery are not the but due to limited overlap w 2017). For example, in case of the thermal output capacity for ng in 2015 (ECN, 2017). Most as heat sources (ECN, 2017). Most as heat sources such as back up b it supplied by district heating will likely decrease further in o ical lifetime of 35 years for a <u>2030</u> <u>1.95</u> -	ad, because of it Matters, 2012; sed bed combus e same. Indeed, with the heat der of 2,6 PJth heat der or district heating t of heat is supp The Amernet su boilers. The fina g using coal-fired coming years du Steam turbine of 2.04 2.04 2.45 - Max 0.05	Is low marginal of IEA ETSAP, 2010 tion coal-fired C heat demand p mand 30 to 45% demand per yea mand would be about lied with large so upplied about 2,7 l heat demand of d power plants is ue to increased of coal supercritical 1.95	osts and relative). In case of 7.2 HP (IEA ETSAP, 2 eaks in winter a of the available r, a CHP plant n ut 210 MWth. cale heat netwo 7 PJ of heat in 20 of the built envir 0,6%. In case h cofiring of bioma CHP (ETRI, 2014	ely long sta (50 full load 2010). A CH nd in other e heat can b eeds to orks which 015, out of ronment is alf of fuel ass and a 4). 2.0 2.3 - Max 0.0
COSTS /ear of Euro nvestment costs Dther costs per year Fixed operational costs per year	The electrical capacity of different s average. Full load hours per year de up times; it typically has more than hours this translates to a capacity up lant with a capacity of 900 MWe a seasons there is a (much) lower hear supplied per year (ECN, 2011). On a produce about 3,4 PJth per year. As Heat Supply by Coal-fired CHP In The About 4% of heat demand in the buch have natural gas-fired CHP, municip which 95% was coming from the An 463 PJ for dwellings and non-reside input in Amercentrale is coal, and the phase out of Dutch coal-fired CHP p Technical Lifetime Coal-fired Power ECN indicates a technical lifetime of 2015 2015 2015 2015 2015 2015 2015 2015	supercritical pulve epend on the marg 7.000 full load ho at lilitization factor and 7.250 full load at demand. Heat is average 25% heat ssuming 4.500 full the Netherlands uilt environment in coal waste incineration mercentrale (ECN, ential buildings in 2 he remainder bior colants under the D of Plants f 30 years for a co	rised coal power plants in OEC ginal production costs (the me ours per year for electricity pro of 83%. IEA (2010) indicates 75 hours produces 23 PJe per yes s produced when the plant pro losses can be assumed in a he load hours (based on Energy n the Netherlands is supplied v tors, biomass heat sources, an 2017). The remaining 5% is su 2015 (ECN, 2017) which mean mass, the share would be 0,3% outch climate agreement. al-fired CHP (ECN, 2011). ETRI 1.44 -	erit order). A coal- boluction (Seebreg 5-85% as capacity ear. Full load hours oduces electricity, at network (ECN, Matters, 2012), the with district heating d coal-fired CHP a upplied by other h s the share of heat 6. The coal share w indicates a techn 2.04 2.86 - Max 0.05 0.08	fired CHP plant runs base loa ts and van Dril, 2010; Energy rutilization factor for a fluidis s for heat delivery are not the but due to limited overlap w 2017). For example, in case o ne thermal output capacity for ng in 2015 (ECN, 2017). Most as heat sources (ECN, 2017). Most as heat sources such as back up b it supplied by district heating will likely decrease further in o ical lifetime of 35 years for a 2030	ad, because of it Matters, 2012; sed bed combus e same. Indeed, with the heat der of 2,6 PJth heat der or district heating t of heat is supp The Amernet su boilers. The fina gusing coal-fired coming years du Steam turbine of 2.04 2.45 - Max 0.05 0.08	Is low marginal of IEA ETSAP, 2010 tion coal-fired C heat demand p mand 30 to 45% demand per yea mand would be about lied with large so upplied about 2,7 l heat demand of d power plants is ue to increased of coal supercritical	osts and relative). In case of 7.2 HP (IEA ETSAP, 2 eaks in winter a of the available r, a CHP plant n ut 210 MWth. cale heat netwo 7 PJ of heat in 20 of the built envir 0,6%. In case h cofiring of bioma CHP (ETRI, 2014	ely long sta (50 full load 2010). A CH nd in other e heat can b eeds to orks which 015, out of ronment is alf of fuel ass and a 4). 2.0 2.3 - Max 0.0 0.0
COSTS Year of Euro Investment costs Other costs per year Fixed operational costs per year (excl. fuel costs) Variable costs per year	The electrical capacity of different s average. Full load hours per year de up times; it typically has more than hours this translates to a capacity u plant with a capacity of 900 MWe a seasons there is a (much) lower hea supplied per year (ECN, 2011). On a produce about 3,4 PJth per year. As Heat Supply by Coal-fired CHP In Th About 4% of heat demand in the bu have natural gas-fired CHP, municip which 95% was coming from the An 463 PJ for dwellings and non-reside input in Amercentrale is coal, and th phase out of Dutch coal-fired CHP p Technical Lifetime Coal-fired Power ECN indicates a technical lifetime of 2015 2015 2015 2015 2015 2015 2015 2015	supercritical pulve epend on the marg 7.000 full load ho at lilitization factor and 7.250 full load at demand. Heat is average 25% heat ssuming 4.500 full the Netherlands uilt environment in coal waste incineration mercentrale (ECN, ential buildings in 2 he remainder bior colants under the D of Plants f 30 years for a co	rised coal power plants in OEC ginal production costs (the me ours per year for electricity pro of 83%. IEA (2010) indicates 75 hours produces 23 PJe per yes s produced when the plant pro losses can be assumed in a he load hours (based on Energy n the Netherlands is supplied v tors, biomass heat sources, an 2017). The remaining 5% is su 2015 (ECN, 2017) which mean mass, the share would be 0,3% outch climate agreement. al-fired CHP (ECN, 2011). ETRI 1.44 -	erit order). A coal- oduction (Seebreg 5-85% as capacity ear. Full load hours oduces electricity, at network (ECN, Matters, 2012), th with district heatin d coal-fired CHP a upplied by other h s the share of heat 6. The coal share w indicates a techn 2.04 2.86 - Max 0.05	fired CHP plant runs base loa ts and van Dril, 2010; Energy rutilization factor for a fluidis s for heat delivery are not the but due to limited overlap w 2017). For example, in case of the thermal output capacity for ng in 2015 (ECN, 2017). Most as heat sources (ECN, 2017). Most as heat sources such as back up b it supplied by district heating will likely decrease further in o ical lifetime of 35 years for a <u>2030</u> <u>1.95</u> -	ad, because of it Matters, 2012; sed bed combus e same. Indeed, with the heat der of 2,6 PJth heat der or district heating t of heat is supp The Amernet su boilers. The fina g using coal-fired coming years du Steam turbine of 2.04 2.04 2.45 - Max 0.05	Is low marginal of IEA ETSAP, 2010 tion coal-fired C heat demand p mand 30 to 45% demand per yea mand would be about lied with large so upplied about 2,7 l heat demand of d power plants is ue to increased of coal supercritical 1.95	osts and relative). In case of 7.2 HP (IEA ETSAP, 2 eaks in winter a of the available r, a CHP plant n ut 210 MWth. cale heat netwo 7 PJ of heat in 20 of the built envir 0,6%. In case h cofiring of bioma CHP (ETRI, 2014	ely long sta (50 full load 2010). A CH nd in other e heat can b eeds to orks which 015, out of ronment is alf of fuel ass and a 4). 2.0 2.3 -

ENERGY IN- AND OUTPUTS	Energy carrier	Unit		Current			2030			2050		
	Main output:				-1.00			-1.00				-1.0
	Electricity	PJ	-1.00	-	-1.00	-1.00	-	-1.00	-1.00	-		-1.0
	Cash	DI			2.50			2.50			<u> </u>	2.5
nergy carriers (per unit of main output)	Coal	PJ	2.50	-	3.57	2.50	-	3.33	2.50	-		3.3
	Heat	PJ			-1.00			-0.38				-0.3
			-2.18	-	-0.38	-1.97	-	-0.38	-1.97	-		-0.3
		РJ	r		-			-				-
			Min	-	Max	Min	-	Max	Min	-		Max
inergy in- and Outputs explanation	Overview: Different types of existing coal-fi electrical efficiency of 46% for ex The electrical efficiency of a CHP efficiency, which is not obtainabl Ratios (used to determine minr • ECN (2011) indicates a 46% ele Disconnecting 0,4GJth at 120+B6 assumed. • Energy Matters (2012) indicate 2030 and 2050 the same ratios a • IEA ETSAP (2010) indicates and 2010). The 2020 projection is an thermal efficiency of 58-60% (59) Other ratios: • ETRI (2014) indicates energy efficiency of electrical load, which means that	xisting ultra-superc plant can only imp le in practice. In ca max. range in table ectrical efficiency a 56°C per GJ coal inp es a 15% thermal e are assumed. electrical efficiency n electrical efficiency (IEA ETSAP, 201	ritical coal power prove marginally se of CHP, a high above): nd (possible) the put results in a de fficiency and a 40 y of 24-28% for a cy of 26-30% (28% 0). For 2050 the s	r plant in th due to furt er heat out rmal efficie ecrease of e 0% electric fluidised-b 6) and a the same efficie upercritica	ne Netherlands (I her technical opt tput lowers the e ency of 40% for a electricicity produ al efficiency for a eed combustion (I ermal efficiency o encies as 2030 ar	EA, 2015). Emizations. The lectricity output coal-fired CHP p uction from 0,46 coal-fired CHP u FBC) coal-fired in of 60-62% (61%). There are no t	maximum po and vice ver lant used fo GJe to 0,4GJ used for large dustrial CHF The 2030 pr	ossible efficiency rsa. r electricity produ e (ECN, 2011). Fo e scale district he o and a thermal er rojection is an ele iencies given in t	of any heat eng uction and distri ir 2020, 2030 an ating (Energy M fficiency (steam ectrical efficienc he report, but o	ine is defin ct heating d 2050 the latters, 20) of 62-649 cy of 28-32 nly efficien	ned as ((ECN, e same 12). Fc % (IEA 2% (309 ncies a	the Carn 2011). values a or 2020, ETSAP, %) and a
IATERIAL FLOWS (OPTIONAL)	In 2050, the max. elec. efficiency Material	y is 43% (ETRI, 2014		Current			2030	014). III 2030, the		2050	270 (ET	N, 2014)
	wateria	Unit		current			2030	_		2050		
Naterial flows			Min		Max	Min		Max -	Min	_		Max
			101111		IVIUX	101111		-	101111			-
			Min	_	Max	Min	_	Max	Min	-		Мах
Material flows explanation					max	1 4 1 1 1 1		WIGA				IVIGA
•												
MISSIONS (Non-fuel/energy-related er	missions or emissions reductions											
MISSIONS (Non-fuel/energy-related er				Current			2030			2050		
MISSIONS (Non-fuel/energy-related er	missions or emissions reductions Substance	(e.g. CCS) Unit		Current			2030	-		2050		
EMISSIONS (Non-fuel/energy-related er			Min	Current	- Max	Min	2030	- Max	Min	2050		- Max
EMISSIONS (Non-fuel/energy-related er			Min	Current	- Max	Min	2030	- Max	Min	2050		- Max
			Min	Current -	- Max - Max	Min Min		-	Min Min	-		-
EMISSIONS (Non-fuel/energy-related er Emissions				Current - -	-		2030 - -	- Max - Max -		2050 - -		Max Max Max
				Current - -	-		2030 - -	-		2050 - -		-
			Min	-	Max	Min	-	- Max -	Min	-		- Max -
			Min	-	Max	Min	-	- Max - Max	Min	-		- Max -
Emissions	Substance	Unit	Min Min Min	-	- Max Max	Min Min	-	- Max - Max -	Min Min	-		Max Max
Emissions Emissions explanation		Unit	Min Min Min	-	- Max Max	Min Min	-	- Max - Max -	Min Min	-		Max Max
Emissions Emissions explanation DTHER	Substance	Unit	Min Min Min	- - - eaner.	- Max Max	Min Min	-	- Max - Max -	Min Min	-		Max Max
Emissions Emissions explanation DTHER Parameter	Substance Substance Most of the non-CO2 emissions a Unit	Unit	Min Min Min	-	- Max Max	Min Min Min	-	- Max - Max -	Min Min	-		Max
Emissions Emissions explanation DTHER Parameter Loss of electricity production per unit of	Substance Substance Most of the non-CO2 emissions a Unit	Unit	Min Min Min	- - - eaner.	- Max - Max	Min Min Min	-	- Max - Max - Max	Min Min	-		- Max - Max - Max
Emissions Emissions explanation DTHER Parameter Loss of electricity production per unit of heat supplied	Substance Substance Most of the non-CO2 emissions a Unit GJe/GJth	Unit	Min Min Min to the flue gas clu	- - - eaner.	- Max - Max - Max - Max 0.18	Min Min Min	-	- Max - Max - Max 0.18	Min Min Min	-		- Max - Max - Max 0.
Emissions Emissions explanation DTHER Parameter Loss of electricity production per unit of heat supplied	Substance Substance Most of the non-CO2 emissions a Unit	Unit	Min Min Min to the flue gas clu	- - - eaner.	- Max - Max - Max - Max - 0.18 0.18	Min Min Min	-	- Max - Max - Max 0.18 0.18	Min Min Min	-		- Max - Max - Max 0. 0.
Emissions Emissions explanation DTHER Parameter Loss of electricity production per unit of heat supplied	Substance Substance Most of the non-CO2 emissions a Unit GJe/GJth	Unit	Min Min Min to the flue gas clu 0.09	- - - eaner.	- Max - Max - Max - Max - Max - 0.18 0.18 0.01	Min Min Min 0.09	-	- Max - Max - Max - Max - 0.18 0.18 0.01	Min Min Min 0.09	-		- Max - Max - Max 0. 0.
Emissions Emissions explanation OTHER	Substance Substance Most of the non-CO2 emissions a Unit GJe/GJth	Unit	Min Min Min to the flue gas clu 0.09	- - - eaner.	- Max - Max - Max - Max - Max - 0.18 0.18 0.01	Min Min Min 0.09	-	- Max - Max - Max - Max - 0.18 0.18 0.01	Min Min Min 0.09	-		- Max Max -
Emissions Emissions explanation OTHER Parameter Loss of electricity production per unit of heat supplied	Substance Substance Most of the non-CO2 emissions a Unit GJe/GJth	Unit	Min Min Min to the flue gas clu 0.09 0.01	- - - eaner.	- Max - Max - Max - Max - Max - Max - 0.18 0.18 0.01 0.01	Min Min Min 0.09 0.01	-	- Max - Max - Max - Max - 0.18 0.01 0.01 -	Min Min Min 0.09 0.01	-		- Max - Max - Max - Max 0.1 0.1 0.0
Emissions Emissions explanation OTHER Parameter Loss of electricity production per unit of heat supplied	Substance	Unit Unit	Min Min Min to the flue gas cluster 0.09 0.01 Min Min	- - - eaner. Current - - -	- Max - Max - Max - Max - Max - 0.18 0.18 0.01 0.01 - Max - Max	Min Min Min 0.09 0.01 Min Min	- - - - 2030 - - -	- Max - Max - Max - Max - Max - Max - Max - Max	Min Min Min 0.09 0.01 Min Min	- - - 2050 - - -		- Max - Max - Max - Max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Emissions Emissions explanation OTHER Parameter Loss of electricity production per unit of heat supplied	Substance Substance Most of the non-CO2 emissions a Unit GJe/GJth	district heating is t electricity producti GJe/GJth at 80 °C (Min Min to the flue gas clue 0.09 0.01 Min Min hat the electrical on (ECN, 2011). T ECN, 2011).	- - - eaner. - Current - - - - - efficiency The higher	- Max Max Max Max Max 	Min Min Min 0.09 0.01 Min is lowered (loss of the heat, the	- - - - - - - - of electricity higher the l	- Max - Max - Max - Max 0.18 0.18 0.01 0.01 - Max - Max - Max - Max - Max	Min Min Min 0.09 0.01 Min Min reach GJth of dr) indicates a loss	- - - - - - - - - - - - - - - - - - -	Je/GJt	- <u>Max</u> - <u>Max</u> - <u>Max</u> - <u>Max</u> 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Emissions Emissions explanation OTHER Parameter Loss of electricity production per unit of heat supplied Water consumption	Substance Substance Most of the non-CO2 emissions a Most of the non-CO2 emissions a Identity GJe/GJth liters/kWh • Downside of utilizing heat for a heating there is 0,18 GJe loss of a heat at 120°C and a loss of 0,09 G	district heating is t electricity producti GJe/GJth at 80 °C (Min Min to the flue gas clue 0.09 0.01 Min Min hat the electrical on (ECN, 2011). T ECN, 2011).	- - - eaner. - Current - - - - - efficiency The higher	- Max Max Max Max Max 	Min Min Min 0.09 0.01 Min is lowered (loss of the heat, the	- - - - - - - - of electricity higher the l	- Max - Max - Max - Max 0.18 0.18 0.01 0.01 - Max - Max - Max - Max - Max	Min Min Min 0.09 0.01 Min Min reach GJth of dr) indicates a loss	- - - - - - - - - - - - - - - - - - -	Je/GJt	- <u>Max</u> - <u>Max</u> - <u>Max</u> - <u>Max</u> 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Emissions Emissions explanation DTHER Parameter Loss of electricity production per unit of heat supplied Water consumption Explanation	Substance Substance Most of the non-CO2 emissions a Most of the non-CO2 emissions a Unit GJe/GJth liters/kWh • Downside of utilizing heat for theating there is 0,18 GJe loss of theat at 120°C and a loss of 0,09 C • According to ETRI the water w	district heating is t electricity producti GJe/GJth at 80 °C (Min Min to the flue gas clue 0.09 0.01 Min Min hat the electrical on (ECN, 2011). T ECN, 2011).	- - - eaner. - Current - - - - - efficiency The higher	- Max Max Max Max Max 	Min Min Min 0.09 0.01 Min is lowered (loss of the heat, the	- - - - - - - - of electricity higher the l	- Max - Max - Max - Max 0.18 0.18 0.01 0.01 - Max - Max - Max - Max - Max	Min Min Min 0.09 0.01 Min Min reach GJth of dr) indicates a loss	- - - - - - - - - - - - - - - - - - -	Je/GJt	- Max - Max - Max - Max - Max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Emissions Emissions explanation DTHER Parameter coss of electricity production per unit of heat supplied Water consumption Explanation Explanation REFERENCES AND SOURCES	Substance Most of the non-CO2 emissions a Most of the non-CO2 emissions a Identified GJe/GJth liters/kWh • Downside of utilizing heat for a heating there is 0,18 GJe loss of a heat at 120°C and a loss of 0,09 a • According to ETRI the water w 2014).	Unit Unit Unit Unit district heating is t electricity producti GJe/GJth at 80 °C (i <i>i</i> thdrawal is equal	Min Min Min to the flue gas cluster 0.09 0.01 Min Min Min Min Min Min Min Image: Comparison of the electrical on (ECN, 2011). The comparison of the electrical on the ele		- Max Max Max Max Max 0.18 0.18 0.18 0.01 0.01 Max of the CHP plant the temperature water consumpt	Min Min Min 0.09 0.09 0.01 Min is lowered (loss of the heat, the	- - - - - - - - - of electricity higher the l	- Max - Max - Max - Max 0.18 0.18 0.01 0.01 - Max - Max - Max - Max - Max - - - - - - - - - - - - - -	Min Min Min 0.09 0.01 Min Min Ceach GJth of dr) indicates a loss ater system) is 0	- - - - - - - - - - - - - - - - - - -	Je/GJt	- Max - Max - Max - Max - Max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Emissions Emissions explanation OTHER Parameter Loss of electricity production per unit of heat supplied Water consumption Explanation Explanation REFERENCES AND SOURCES Seebregts and van Dril (2010). Kolencent	Substance Substance Most of the non-CO2 emissions a Most of the non-CO2 emissions a Unit GJe/GJth liters/kWh • Downside of utilizing heat for theating there is 0,18 GJe loss of theat at 120°C and a loss of 0,09 G • According to ETRI the water w 2014).	Unit Unit Unit Unit Unit Unit	Min Min to the flue gas clue to the flue gas clue 0.09 0.01 Min Min Min hat the electrical on (ECN, 2011). T ECN, 2011). T ECN, 2011). to 0,01 liters per		- Max Max Max Max Max 0.18 0.18 0.18 0.01 0.01 Max of the CHP plant the temperature water consumpt	Min Min Min 0.09 0.09 0.01 Min is lowered (loss of the heat, the	- - - - - - - - - of electricity higher the l	- Max - Max - Max - Max 0.18 0.18 0.01 0.01 - Max - Max - Max - Max - Max - - - - - - - - - - - - - -	Min Min Min 0.09 0.01 Min Min Ceach GJth of dr) indicates a loss ater system) is 0	- - - - - - - - - - - - - - - - - - -	Je/GJt	- Max - Max - Max - Max - Max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Emissions Emissions explanation OTHER Parameter Loss of electricity production per unit of neat supplied Water consumption Explanation Explanation REFERENCES AND SOURCES Seebregts and van Dril (2010). Kolencent https://www.climategate.nl/wp-content,	Substance Substance Most of the non-CO2 emissions a Most of the non-CO2 emissions a Unit GJe/GJth liters/kWh • Downside of utilizing heat for a heating there is 0,18 GJe loss of a heat at 120°C and a loss of 0,09 a • According to ETRI the water w 2014).	Unit Unit Unit Unit Unit Unit	Min Min to the flue gas clue to the flue gas clue 0.09 0.01 Min Min Min hat the electrical on (ECN, 2011). T ECN, 2011). T ECN, 2011). to 0,01 liters per		- Max Max Max Max Max 0.18 0.18 0.18 0.01 0.01 Max of the CHP plant the temperature water consumpt	Min Min Min 0.09 0.09 0.01 Min is lowered (loss of the heat, the	- - - - - - - - - of electricity higher the l	- Max - Max - Max - Max 0.18 0.18 0.01 0.01 - Max - Max - Max - Max - Max - - - - - - - - - - - - - -	Min Min Min 0.09 0.01 Min Min Ceach GJth of dr) indicates a loss ater system) is 0	- - - - - - - - - - - - - - - - - - -	Je/GJt	- Max Max Max Max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Emissions Emissions Emissions explanation DTHER Parameter coss of electricity production per unit of heat supplied Water consumption Explanation Explanation REFERENCES AND SOURCES Geebregts and van Dril (2010). Kolencent https://www.climategate.nl/wp-content, EA (2015). Projected Costs of Generating	Substance Substance Most of the non-CO2 emissions a Most of the non-CO2 emissions a Unit GJe/GJth liters/kWh • Downside of utilizing heat for a heating there is 0,18 GJe loss of a heat at 120°C and a loss of 0,09 a • According to ETRI the water w 2014).	Unit Unit Unit Unit Unit Unit	Min Min to the flue gas clue to the flue gas clue 0.09 0.01 Min Min Min hat the electrical on (ECN, 2011). T ECN, 2011). T ECN, 2011). to 0,01 liters per		- Max Max Max Max Max 0.18 0.18 0.18 0.01 0.01 Max of the CHP plant the temperature water consumpt	Min Min Min 0.09 0.09 0.01 Min is lowered (loss of the heat, the	- - - - - - - - - of electricity higher the l	- Max - Max - Max - Max 0.18 0.18 0.01 0.01 - Max - Max - Max - Max - Max - - - - - - - - - - - - - -	Min Min Min 0.09 0.01 Min Min Ceach GJth of dr) indicates a loss ater system) is 0	- - - - - - - - - - - - - - - - - - -	Je/GJt	Max Max Max Max 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Emissions Emissions explanation DTHER Parameter Coss of electricity production per unit of neat supplied Water consumption Explanation Explanation REFERENCES AND SOURCES Seebregts and van Dril (2010). Kolencent nttps://www.climategate.nl/wp-content, EA (2015). Projected Costs of Generating ECN (2017). Monitoring Warmte 2015	Substance Substance Substance Most of the non-CO2 emissions a Most of the non-CO2 emissions a Unit GJe/GJth liters/kWh • Downside of utilizing heat for a heating there is 0,18 GJe loss of a heat at 120°C and a loss of 0,09 G • According to ETRI the water w 2014). trales Eemshaven Dwingende rede yuploads/2015/03/ECN-kolencent g Electricity 2015 Edition	Unit Unit Unit Unit Unit Unit	Min Min to the flue gas clue to the flue gas clue 0.09 0.01 Min Min Min hat the electrical on (ECN, 2011). T ECN, 2011). T ECN, 2011). to 0,01 liters per		- Max Max Max Max Max 0.18 0.18 0.18 0.01 0.01 Max of the CHP plant the temperature water consumpt	Min Min Min 0.09 0.09 0.01 Min is lowered (loss of the heat, the	- - - - - - - - - of electricity higher the l	- Max - Max - Max - Max 0.18 0.18 0.01 0.01 - Max - Max - Max - Max - Max - - - - - - - - - - - - - -	Min Min Min 0.09 0.01 Min Min Ceach GJth of dr) indicates a loss ater system) is 0	- - - - - - - - - - - - - - - - - - -	Je/GJt	- Max Max Max Max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Emissions Emissions explanation DTHER Parameter Oss of electricity production per unit of heat supplied Water consumption Explanation REFERENCES AND SOURCES Seebregts and van Dril (2010). Kolencent https://www.climategate.nl/wp-content, EA (2015). Projected Costs of Generating ECN (2017). Monitoring Warmte 2015 EA ETSAP (2010). Combined Heat and Pc	Substance Substance Most of the non-CO2 emissions a Most of the non-CO2 emissions a Identified GJe/GJth liters/kWh Iters/kWh Output According to ETRI the water w 2014). strales Eemshaven Dwingende rede yuploads/2015/03/ECN-kolencent g Electricity 2015 Edition	Unit Unit Unit Unit Unit Unit	Min Min to the flue gas clue to the flue gas clue 0.09 0.01 Min Min Min hat the electrical on (ECN, 2011). T ECN, 2011). T ECN, 2011). to 0,01 liters per		- Max Max Max Max Max 0.18 0.18 0.18 0.01 0.01 Max of the CHP plant the temperature water consumpt	Min Min Min 0.09 0.09 0.01 Min is lowered (loss of the heat, the	- - - - - - - - - of electricity higher the l	- Max - Max - Max - Max 0.18 0.18 0.01 0.01 - Max - Max - Max - Max - Max - - - - - - - - - - - - - -	Min Min Min 0.09 0.01 Min Min Ceach GJth of dr) indicates a loss ater system) is 0	- - - - - - - - - - - - - - - - - - -	Je/GJt	- Max Max Max Max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
Emissions Emissions Emissions explanation DTHER Parameter Loss of electricity production per unit of heat supplied Water consumption Explanation REFERENCES AND SOURCES Seebregts and van Dril (2010). Kolencent https://www.climategate.nl/wp-content, EA (2015). Projected Costs of Generating ECN (2017). Monitoring Warmte 2015 EA ETSAP (2010). Combined Heat and Pc ECN (2011). Restwarmtebenutting - Pote	Substance Substance Most of the non-CO2 emissions a Most of the non-CO2 emissions a Identified and a state and a state and a state a Ounit GJe/GJth liters/kWh Iters/kWh Ound a loss of 0,09 G heat at 120°C and a loss of 0,09 G heat at 120°C and a loss of 0,09 G According to ETRI the water w 2014). state and a state a ower - Technology Factsheet ntiëlen, besparing, alternatieven	Unit Unit Unit Unit Unit Unit	Min Min to the flue gas clue to the flue gas clue 0.09 0.01 Min Min Min hat the electrical on (ECN, 2011). T ECN, 2011). T ECN, 2011). to 0,01 liters per		- Max Max Max Max Max 0.18 0.18 0.18 0.01 0.01 Max of the CHP plant the temperature water consumpt	Min Min Min 0.09 0.09 0.01 Min is lowered (loss of the heat, the	- - - - - - - - - of electricity higher the l	- Max - Max - Max - Max 0.18 0.18 0.01 0.01 - Max - Max - Max - Max - Max - - - - - - - - - - - - - -	Min Min Min 0.09 0.01 Min Min Ceach GJth of dr) indicates a loss ater system) is 0	- - - - - - - - - - - - - - - - - - -	Je/GJt	Max Max Max Max 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Emissions Emissions explanation DTHER Parameter oss of electricity production per unit of heat supplied Water consumption Water consumption Explanation Explanation REFERENCES AND SOURCES Exeebregts and van Dril (2010). Kolencent https://www.climategate.nl/wp-content, EA (2015). Projected Costs of Generating ECN (2017). Monitoring Warmte 2015 EA ETSAP (2010). Combined Heat and Pc ECN (2011). Restwarmtebenutting - Pote Energy Matters (2012). Memo - Kentaller TRI (2014). Carlsson J, Energy Technolog 0.2790/057687, JRC92496	Substance Substance Most of the non-CO2 emissions a Most of the non-CO2 emissions a Identified and the second and the second a GJe/GJth liters/kWh • Downside of utilizing heat for a heating there is 0,18 GJe loss of a heat at 120°C and a loss of 0,09 G • According to ETRI the water w 2014). g Electricity 2015 Edition ower - Technology Factsheet ntiëlen, besparing, alternatieven n techniek & economie gy Reference Indicator projections	Unit Unit Unit Unit Unit Unit Unit Unit	Min Min Min to the flue gas clue 0.09 0.01 0.01 Min Min hat the electrical on (ECN, 2011). T ECN, 2011). T ECN, 2011). T to 0,01 liters per	- - - eaner. - - - - - - - - - - - - - - - - - - -	- Max Max Max Max Max 0.18 0.18 0.01 0.01 Max of the CHP plant the temperature water consumpt	Min Min Min Min 0.09 0.01 0.01 Min is lowered (loss of the heat, the ion (i.e. water w	- - - - - - - of electricity higher the l hich is not re	- Max - Max - Max - Max 0.18 0.18 0.01 0.01 - Max - Max - Max - Max - Max - - Max - - - - - - - - - - - - -	Min Min Min Min 0.09 0.01 Min Min Min reach GJth of dr) indicates a loss ater system) is 0	- - - - - - - - - - - - - - - - - - -	Je/GJt ber kW	Max Max Max Max 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Emissions Emissions explanation OTHER Parameter Loss of electricity production per unit of heat supplied Water consumption	Substance Substance Most of the non-CO2 emissions a Most of the non-CO2 emissions a Identified and a state and a state a GJe/GJth liters/kWh • Downside of utilizing heat for a heating there is 0,18 GJe loss of a heat at 120°C and a loss of 0,09 G • According to ETRI the water w 2014). state a and a loss of 0,09 G • According to ETRI the water w 2014). bower - Technology Factsheet ntiëlen, besparing, alternatieven n techniek & economie gy Reference Indicator projections tivities/jrc-setis-reports/etri-2014	Unit Unit Unit Unit Unit Unit Unit Unit	Min Min Min to the flue gas clue 0.09 0.01 0.01 Min Min hat the electrical on (ECN, 2011). T ECN, 2011). T ECN, 2011). T to 0,01 liters per	- - - eaner. - - - - - - - - - - - - - - - - - - -	- Max Max Max Max Max 0.18 0.18 0.01 0.01 Max of the CHP plant the temperature water consumpt	Min Min Min Min 0.09 0.01 0.01 Min is lowered (loss of the heat, the ion (i.e. water w	- - - - - - - of electricity higher the l hich is not re	- Max - Max - Max - Max 0.18 0.18 0.01 0.01 - Max - Max - Max - Max - Max - - Max - - - - - - - - - - - - -	Min Min Min Min 0.09 0.01 Min Min Min reach GJth of dr) indicates a loss ater system) is 0	- - - - - - - - - - - - - - - - - - -	Je/GJt ber kW	- Max - Max - Max - Max - Max 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.