TECHNOLOGY FACTSHEET

STEAM METHANE REFOR	MING (SMR) FOR HYDROG	EN PRODL	JCTION W	ITH CARBO	ΟΝ CAPTU	RE USING	FLUE GAS					
Date of factsheet	27-7-2018											
Author	Jacob Janssen											
Sector	Hydrogen supply											
ETS / Non-ETS	ETS											
Type of Technology	Steam methane reforming (SMR)											
Description	Steam methane reforming (SMR) is a method that can be used for producing hydrogen from natural gas. This is achieved in a processing device called a reformer which reacts steam at high temperature with the gas. SMR uses the following endothermic reaction: CH4 + H2O \Rightarrow CO + 3H2.											
	The reaction is carried out at an activation energy of 206 kJ/mol and temperatures of 500-900 degrees Celsius. In this SMR plant, a COGEN plant is running to export a relatively small fraction of the energy involved to the electricity grid.											
TRL level 2020	TRL 9											
	Mature technology. No more cost developments are assumed.											
TECHNICAL DIMENSIONS												
	Functional Unit	Value and Range										
Capacity	MW		300									
cupucity				Min			-			Мах		
Potential	MW	NL				Unlimited						
				Min			_			Мах		
Market share	%											
				Min			-			Мах		
Capacity utlization factor				IVIIII				1		IVIUA		
Unit of Activity	PJ/year											
Technical lifetime (years)								25	5			
Full-load running hours per year								8,32	22			
Progress ratio								0.9	5			
Hourly profile	No											
Explanation	IEA (2017) reports 100,000 Nm3/h a	at 10.8 MJ/Nm	3, this translate	s into a capaci	ty of precisely 3	00 MW hydrog	gen energy out	put. The progre	ess ratio is foun	id in Thomas (2009).	
COSTS												
Year of Euro	2015											
	Euro per Functional Unit		Current			2030			2050			
Investment costs per year	mln.€/ MW		1.33				1.33					
			1.16	-	1.33	1.16	-	1.33	1.16	-	1.33 1.33	
Other costs per year	mln. € / MW				_			-			-	
			Min	-	Max	Min	-	Max	Min	-	Max	
Fixed operational costs per year	mln. € / MW			1	0.04		1	0.04			0.04	
(excl. fuel costs)			0.04	_	0.07	0.04	_	0.07	0.04	-	0.07	
			0.04		0.07	0.04		0.07	0.0 +		0.07	

	mln. € / MW		· · · ·		0.00			0.00			1
Variable costs per year			0.26		0.26 0.26	0.26		0.26	0.26		0.26
Costs explanation	The data from NTNU (2016) is base and values are based on low heatin part be explained by the use of dat al., 2009) when estimating the cost carbon capture and storage (CCS) c In these figures, the OPEX costs am base year, and are found in Vita (20	ng value (LHV). (a for a smaller s t of a larger scal component. nount to 3.6 % o	Costs for CO2 cap ize plant. Conver e plant. Due to la	ture are incluntional plants ntional plants ck of data, th	uded. Sinnot (20 s (such as SMR) here is an implici	09) finds a high benefit from ec it assumption tl	er (per kg of onomy of sca nat the same	hydrogen output ale, therfore a sca scaling factor ca	t) value for inv ale-up factor o n be applied to	estment cosi f 0.8 can be u o this plant, i	ts, which can in used (Sinnott e ncluding its
ENERGY IN- AND OUTPUTS											
Energy carriers (per unit of main output)	Energy carrier	Unit	Current			2030			2050		
	Main output:	PJ			-1.00			-8.99			-8.99
	Hydrogen		-1.00	-	-1.00	-8.99	-	-8.99	-8.99	-	-8.99
	Electricity	PJ			-0.03			-0.31			-0.3
			-0.03	-	0.00	-0.31	-	0.00	-0.31	-	0.00
	Natural gas resource (gas fields)	PJ			1.48			1.48			1.48
			1.48	-	1.48	1.48	-	1.48	1.48	-	1.48
		PJ			-			-			-
			Min	-	Мах	Min	-	Max	Min	-	Мах
	The production of hydrogen of 10 ^A and scaled accordingly. The NTNU study reports on an ener power of 300 MW (with 0.95 factor	rgy efficiency of	0.82, however b	ased on thei	own reported v	values of in- and	d outlet, an e	nergy efficiency	of 0.96 is foun	d. A plant wi	th an average

EMISSIONS (Non-fuel/energy-related	emissions or emissions reductions (e	.g. CCS)									
	Substance	Unit	Current -0.07			2030 -0.07			2050 -0.07		
	CO2	Mton									
			-0.07	-	-0.07	-0.07	-	-0.07	-0.07	-	-0.07
					-			-			-
Emissions			Min	-	Max	Min	-	Max	Min	-	Max
					-			-			-
			Min	-	Max	Min	-	Max	Min	-	Max
					-			-			_
			Min	-	Мах	Min	-	Max	Min	-	Max
REFERENCES AND SOURCES	With CCS, the number is extrapolar by 8.99 to give a result per PJ. The			•	• .		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
IEA (2017). Techno-Economic Evaluatio	on of SMR Based Standalone (Merchar	nt) Hydrogen Pla	ant with CCS. Ac	cessed throug	h https://ieagh	g.org/exco_do	cs/2017-02.pc	lf			
Jakobsen, D., & Åtland, V. (2016). Cond	cepts for large scale hydrogen product	ion. Thesis, NTN	IU.								
Voldsund, M., Jordal, K., & Anantharan	nan, R. (2016). Hydrogen production v	vith CO2 capture	e. International	Journal of Hyd	lrogen Energy, 4	41(9), 4969-499	92.				
Expert opinion, Jacob Moulijn											
Sinnott, R. K., & Towler, G. (2009). Che	emical engineering design: SI Edition. E	lsevier.									
Ramsden, T., Steward, D. & Zuboy, J. (2	2009). Analyzing the Levelized cost of	Centralized and	Distributed Hyd	lrogen Produc	tion Using the H	H2A productior	n Model, Versi	on 2, National R	enewable Ener	gy Laboratory	, Virginia, 2009
IEA (2015). Technology Roadmap - Hyc	drogen and Fuel Cells, OECD/IEA.										
Whitesides, R.W. (2005). Process equip	· · · ·	•		urse G 127 (20	005).						
Vita, A. et al (2018). Sectoral integratio			SET								
Thomas (2009). Low-Cost Hydrogen Di	istributed Production System Develop	ment									