TECHNOLOGY FACTSHEET

TNO

REF BOF STEELMAKING -	GREENFIELD												
Date of factsheet	7-9-2020												
Author Sector	Kira West Industry: Iron and steel												
5000	All												
ETS / Non-ETS	ETS												
Description	The most common steelmaking route is called blast furnace-basic oxygen furnace (BF-BOF) steelmaking, which was invented in 1948 and now accounts for about 70% of global crude steel output (World Steel 2019). This process is also called basic oxygen steelmaking (BOS) or oxygen converter steelmaking (OCS). In the blast furnace, iron ore (in the form of sinter, pellets, and lump ore) and coal (in the form of coke and pulverized coal), and flux (alkaline or "basic" materials, typically burnt lime or dolomite, which react with impurities to form slag that can be separated) are injected into the top of the blast furnace, flowing downward into contact with upward-moving, hot, CO-rich gases at about 900 to 1300 degrees C. Through this process, the iron ore (Fe2O3) is reduced into elemental iron, and the iron is mixed with carbon monoxide (CO) from the flue gas. Carbon (supplied by coal and coke) acts as a reducing agent. The molten, carbon-rich (4-5%) pig iron (also referred to as hot metal) that is produced in the blast furnace is then oxidized in a basic oxygen furnace, in an exothermic oxidation reaction as pure, hot oxygen is blown over the metal, to reduce the carbon content to below 2% (often less than 1%, depending on final product specifications). Liquid crude steel is then tapped from the furnace, and slag (a byproduct, a mixture of metal oxides) removed. Coke (a high carbon content fuel, with most impurities present in coal removed) can be made onsite by heating coal in a coke oven to a high temperature (typically around 1000 degC) in vacuum conditions, or can be purchased from an offsite coke oven.												
	he slag (by-product) can be used as an additive to cement, creating concrete mixtures with advantageous properties and reducing the amount of Portland cement needed, or can be sold or liming purposes to the agricultural sector.												
	The process also produces several off-gases from the coke ovens, blast furnace, and basic oxygen furnace with energy content that can be used. Their composition and calorific value is shown below. They can be reinjected at various points during the process (in the coke oven, pellet plant, and blast furnace), used to produce heat and power, and/or used as a feedstock for chemical production. In the case of Tata Steel in IJmuiden, the only BOF steelmaking process in the Netherlands, these excess gases arising from production are either combusted for preheating of furnaces, reinjected to the blast furnace, or used to generate electricity at nearby power plants (one owned by Tata Steel, and 3 others owned by other enterprises). The values shown as outputs in this factsheet are the net production after re-use on-site (only the part that is exported to other sites or used for power generation). For a detailed view of on-site use of these gases, see Keys, van Hout and Daniëls, 2019 and IEAGHG 2019.												
	-Blast furnace gas: 49% N2, 22% CO, -Basic oxygen furnace gas: 57% CO, 1	22% CO2, 4% H2O, 22% CO2, 4% H 4% CO2, 14% H	12, 3% H2O; 3.2 N2, 12% H2O, 39	MJ/normal cu MJ/normal cu 6 H2; 7.5 MJ/	ubic meter (LHV) normal cubic me	eter (LHV)							
TRL level 2020	TRL 9 This is the dominant primary steelma	iking process a	nd has been ope	erating comm	ercially for nearl	y 70 years.							
TECHNICAL DIMENSIONS	Functional Unit						Value and Ran	ge					
Capacity	Mton crude steel		7.80			7.80 -				7.80			
Potential	NL	Mton steel	6.81	Current 6.81 -	6.81	Min	<u> </u>	Мах	Min	<u>-</u>	Max		
Market share	NL	%	100.00	100.00	100.00	Min		Max	Min		Max		
Capacity utlization factor									0.87				
Fuil-load running nours per year	Mton crude												
Technical lifetime (vears)	steel/year								25.00				
Progress ratio									25.00				
Hourly profile Explanation	No Capacity is equal to the total nomina utilization factor is derived from 2018	l crude steelma 8 data.	aking capacity in	the Netherla	nds in 2018. Pot	ential is given	as total produc	ction of crude s	teel in the Neth	erlands as of 20	18. Capacity		
COSTS	2015												
Year of Euro	Euro per Functional Un	it		Current			2030			2050			
Investment costs	mln. € / Mton crude steel			527.90			-			-			
Other costs per year	mln. € / Mton crude steel		480.00 Min		789.00 Max	Min Min	- - -	Max Max	Min Min	-	Max Max		
Fixed operational costs per year (excl. fuel costs)	mln. € / Mton crude steel		33.18	33.18	112.00	Min		Max	Min		Max		
Variable costs per year	mln. € / Mton crude steel		9.00	9.00	9.00	Min	-	Мах	Min	-	Мах		
Costs explanation	CAPEX is specified for greenfield cons OPEX is given as mln € per Mt/yr stee purchased scrap, ferroalloys, and flux Commission (2016) provides annualiz factsheet were derived from the ann	struction. No fu el capacity. Var xes (this can be zed capital inve ualized costs a:	uture cost reduc iable costs show calculated fron estment costs, w ssuming a range	tions are proj vn above inclu n the material vithout specify e of discount r	ected as this is a de water, refrac flows below; as ving a discount ra ates of 5%-10%	mature techn tories, electro sumed costs a ate or equipme and equipmen	ology. Variable des, casting po ire provided in ent lifetime. Th it economic life	e costs are given wder, and slud comments). Fu le overnight cap times of 10-20	as mln € per № ge/slag disposal el costs are also vital costs based years.	It steel produce fees. Variable o excluded. Euro on this source	d, and fixed costs exclude pean given in this		
ENERGY IN- AND OUTPUTS	-	-		-									
Energy carriers (per unit of main output)	Energy carrier Main output:	Unit		Current 18.55			2030			- 2050			
	Coal	PJ	16.36	-	19.39	Min	-	Max	Min	-	Max		
	Natural gas	PJ	-		1.68	Min		Max	Min		Max		
	Coke oven gas	PJ PI	-0.31		-	Min		Max	Min		Max		
	Blast furnace gas	PJ	-3.72	-	-3.31	Min	-	Max	Min	-	Max		
Energy in- and Outputs explanation	The energy flows above are net energy inputs to the steelmaking process with boundaries (as specified above) from coking and sintering to tapping liquid crude steel from the basic oxygen furnace; intermediate energy flows are not shown. Additional energy flows are shown in the section below. Coal is processed into coke in a coking plant, which is injected into the blast furnace. Energy-rich off-gases from both the blast furnace and the basic oxygen furnace are typically recycled (combusted) as energy sources in the process. The negative values represent surplus energy carriers beyond what is needed to produce crude steel. These can be utilised in various ways either within the steel sector or in other nearby industrial sites. When CBS data is used, the values refer to 2017. Additional energy flows are included in "Other" below.												
	Note that "blast furnace gas" here re have been aggregated. European Cor IEAGHG (2013) assumes a balanced s oxygen furnace gas as the primary fu directly comparable with the values o imported for the power plant, and to	fers to process mmission (2016 supply and den els, with suppl of CBS and Key include electr	gases from both 5) also does not nand of electricit ementary natura s, van Hout and icity generated.	h the blast fur specify outpu ty within the p al gas use for Daniels. Here	nace and the ba ts of energy-rich plant boundaries electricity genera values have bee	isic oxygen fur a processes gas 5, based on an ation, and all c en adjusted to	nace, following ses. on-site sub-cri coke oven gas u account for BC	g the CBS definit tical gas boiler used to supply h DFG/BFG export	tion. Values from power plant, us neat within the p ed to the power	n Keys, van Hou ing blast furnac process. This ca r plant, to exclu	it and Daniels e gas and basic se is thus not de natural gas		
	European Commission (2016) has rounded the values for energy consumption to the nearest GJ, and includes energy consumption of natural gas and electricity of less than 1 GJ/t HRC.												

MATERIAL FLOWS (OPTIONAL)												
	Material	Unit	I	Current			2030			2050		
	Iron ore		1.24			-			-			
Material flows		Mt	1.24	-	1.24	Min	-	Мах	Min	_	Max	
	Crude steel		1	-1.00			-			_	1	
		Mt	-1.00	-	-1.00	Min	_	Мах	Min	_	Max	
	Iron ore refers to lump ore, fines	s, and pellets purc	hased; fines are	further processe	ed into sinter	on-site. Other	materials (flux	, metal scrap) a	re shown below	v in the sectior	n "Other."	
	Assumed iron ore prices are as fo	ollows (IEAGHG, 2	013):									
Material flows explanation	Lump ore EUR 100/t Fines EUR 78-83/t											
EMISSIONS (Non-fuel/energy-related	l emissions or emissions reductions	(e.g. CCS)										
	Substance	Unit	Current				2030		2050			
	CO2 (process)	Mton	0.52			-			-			
			0.52	_	0.52	Min	-	Max	Min	-	Max	
	NOx	kton		0.81			-	_		-		
Emissions			0.81	_	0.81	Min	_	Max	Min	_	Max	
	SO2	kton		0.46			-	_		-		
			0.46	-	0.46	Min	-	Max	Min	-	Max	
	Fijn stof PM10	kton		0.27			-	-		-		
			0.27	-	0.27	Min	-	Max	Min	-	Max	
	CO2 emissions shown above incl	ude only process-	related CO2 emi	issions (excludin	g emissions f	rom fuel comb	oustion in utilit	ies and from fue	l combustion ir	n the process).	This has been	
Emissions explanation	estimated on the basis of carbon	n inputs of coke, co	pal, flux, and iror	n ore compared	to carbon cor	ntained in cruc	le steel and of	fgases (PBL 200	9). The total CO	D2 emissions i	ncluding	
	energy consumption are about 1	L,85-1,9 MtCO2/M	ton steel. PM er	nissions (dust) a	re not specifi	ed as 2.5 or 10) in Tata Steel's	s sustainability re	eporting.			
OTHER												
OTHER Parameter	Unit			Current			2030			2050		
OTHER Parameter Electricity	Unit PJ			Current 1.34			2030	-		2050 -		
OTHER Parameter Electricity	PJ		1.30	Current 1.34 -	1.34	Min	2030 - -	Max	Min	2050 - -	Max	
OTHER Parameter Electricity Oil	PJ		1.30	Current 1.34 - 0.03	1.34	Min	2030 - - -	Max	Min	2050 - - -	Max	
OTHER Parameter Electricity Oil	Unit PJ PJ		1.30 0.03	Current 1.34 - 0.03 -	1.34	Min Min	2030 - - - - -	Max Max	Min Min	2050 - - - -	Max Max	
OTHER Parameter Electricity Oil Fluxes	Unit PJ PJ Mton		1.30 0.03	Current 1.34 - 0.03 - 0.32	1.34 0.03	Min	2030 - - - - - -	Max Max	Min Min	2050 - - - - - -	Max Max	
OTHER Parameter Electricity Oil Fluxes	Unit PJ PJ Mton		1.30 0.03 0.13	Current 1.34 - 0.03 - 0.32 -	1.34 0.03 0.32	Min Min Min	2030 - - - - - - -	Max Max Max	Min Min Min	2050 - - - - - - -	Max Max Max	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys	Unit PJ PJ Mton Mton		1.30 0.03 0.13	Current 1.34 - 0.03 - 0.32 - 0.13	1.34 0.03 0.32	Min Min Min Min	2030 - - - - - - - - - -	Max Max Max	Min Min Min	2050 - - - - - - - - -	Max Max Max	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys	Unit PJ PJ Mton Mton		1.30 0.03 0.13 0.13	Current 1.34 - 0.03 - 0.32 - 0.13 -	1.34 0.03 0.32 0.18	Min Min Min Min	2030 - - - - - - - - - - - - -	Max Max Max Max	Min Min Min Min	2050 	Max Max Max Max	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys	Unit PJ PJ Mton Mton In and outputs are given for the state of t	full steelmaking p	1.30 0.03 0.13 0.13 rocess, from iror	Current 1.34 - 0.03 - 0.32 - 0.13 - ore to hot rolle	1.34 0.03 0.32 0.18 ed coil. A tota	Min Min Min Min I of about 110-	2030 - - - - - - - - - - - - -	Max Max Max Max bic meters of ox	Min Min Min Min Sygen are neede	2050 - - - - - - - - - - - - -	Max Max Max Max of crude steel	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys	Unit PJ PJ Mton Mton In and outputs are given for the r (IEAGHG 2013; Keys, van Hout ar op-site with an air separation up	full steelmaking p nd Daniels, 2019),	1.30 0.03 0.13 0.13 rocess, from iror considering oxy	Current 1.34 - 0.03 - 0.32 - 0.13 - ore to hot rollegen injection to cluded above. File	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy	Min Min Min Min I of about 110- gen furnace ar	2030 - - - - - - - - - - - - -	Max Max Max Max bic meters of ox enriched air blast	Min Min Min Min sygen are neede t in the blast fu	2050 - - - - - - - - - - - ed per tonne of rnace. Oxygen	Max Max Max Max of crude steel n is produced cations. Flux is	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys	Unit PJ PJ Mton Mton In and outputs are given for the solution of the	full steelmaking p nd Daniels, 2019), it, and associated with impurities to	1.30 0.03 0.13 0.13 rocess, from iror considering oxyg energy use is ino form a slag that	Current 1.34 - 0.03 - 0.32 - 0.13 - n ore to hot rolle gen injection to cluded above. Fl can be easily set	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy ux and scrap	Min Min Min Min I of about 110- gen furnace ar consumption of	2030 - - - - - - - - - - - - -	Max Max Max bic meters of ox enriched air blast cantly dependin	Min Min Min Win tygen are neede t in the blast fu g on the final p	2050 - - - - - - - ed per tonne c rnace. Oxygen roduct specifie	Max Max Max Max of crude steel n is produced cations. Flux is	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys	Unit PJ PJ Mton Mton In and outputs are given for the (IEAGHG 2013; Keys, van Hout ar on-site with an air separation un an alkaline material that reacts v Only purchased scrap material is	full steelmaking p nd Daniels, 2019), it, and associated with impurities to sincluded here: in	1.30 0.03 0.13 0.13 rocess, from iror considering oxyg energy use is ino form a slag that ternal scrap is ex	Current 1.34 - 0.03 - 0.32 - 0.13 - n ore to hot rolle gen injection to cluded above. Fl can be easily sep ccluded from thi	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy ux and scrap parated from s value	Min Min Min I of about 110- gen furnace ar consumption of liquid crude st	2030 - - - - - - - - - - - - -	Max Max Max bic meters of ox enriched air blast cantly dependin purnt lime, limes	<i>Min</i> <i>Min</i> <i>Min</i> Sygen are neede t in the blast fu g on the final p stone, olivine an	2050 - - - - - - - - - - - - -	Max Max Max Max of crude steel of sproduced cations. Flux is e are used.	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys Explanation	Unit PJ PJ Mton Mton In and outputs are given for the response of the second seco	full steelmaking p nd Daniels, 2019), it, and associated with impurities to s included here; in	1.30 0.03 0.13 0.13 rocess, from iror considering oxy energy use is inc form a slag that ternal scrap is ex	Current 1.34 - 0.03 - 0.32 - 0.13 - ore to hot rolle gen injection to cluded above. Fl can be easily sep cluded from thi	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy ux and scrap parated from s value.	Min Min Min Of about 110- gen furnace ar consumption of liquid crude st	2030 - - - - - - - - - - - - -	Max Max Max bic meters of ox enriched air blast cantly dependin purnt lime, limes	<i>Min</i> <i>Min</i> <i>Min</i> Cygen are neede t in the blast fu g on the final p	2050 - - - - - - ed per tonne c rnace. Oxygen rroduct specifie nd/or dolomite	Max Max Max Max of crude steel n is produced cations. Flux is e are used.	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys Explanation	Unit PJ PJ Mton Mton In and outputs are given for the (IEAGHG 2013; Keys, van Hout ar on-site with an air separation un an alkaline material that reacts v Only purchased scrap material is Assumed costs (IEAGHG, 2013): Flux EUR 31/t (average of severa	full steelmaking p nd Daniels, 2019), it, and associated with impurities to s included here; in a products)	1.30 0.03 0.13 0.13 rocess, from iror considering oxyg energy use is ind form a slag that ternal scrap is ex	Current 1.34 - 0.03 - 0.32 - 0.13 - n ore to hot rolle gen injection to cluded above. Fl can be easily sep scluded from thi	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy ux and scrap parated from s value.	Min Min Min I of about 110- gen furnace ar consumption o liquid crude st	2030 - - - - - - - - - - - - -	Max Max Max Max bic meters of ox enriched air blast cantly dependin purnt lime, limes	<i>Min</i> <i>Min</i> <i>Min</i> Sygen are neede t in the blast fu g on the final p stone, olivine an	2050 - - - - - - - - - - - - -	Max Max Max Max of crude steel of sproduced cations. Flux is e are used.	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys Explanation	Unit PJ PJ Mton Mton In and outputs are given for the filler (IEAGHG 2013; Keys, van Hout are on-site with an air separation un an alkaline material that reacts work Only purchased scrap material is Assumed costs (IEAGHG, 2013): Flux EUR 31/t (average of severa Purchased scrap EUR 222/t	full steelmaking p nd Daniels, 2019), it, and associated with impurities to s included here; in I products)	1.30 0.03 0.13 0.13 rocess, from iror considering oxyg energy use is ind form a slag that ternal scrap is ex	Current 1.34 - 0.03 - 0.32 - 0.13 - ore to hot rolle gen injection to cluded above. Fl can be easily sep scluded from thi	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy ux and scrap parated from s value.	Min Min Min Min I of about 110- gen furnace ar consumption of liquid crude st	2030 - - - - - - - - - - - - -	Max Max Max Max bic meters of ox enriched air blast cantly dependin purnt lime, limes	Min Min Min Win Cygen are neede t in the blast fu g on the final p	2050 - - - - - - ed per tonne c rnace. Oxygen rroduct specifie nd/or dolomite	Max Max Max Max of crude steel n is produced cations. Flux is e are used.	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys Explanation	Unit PJ PJ Mton Mton In and outputs are given for the filler (IEAGHG 2013; Keys, van Hout ar on-site with an air separation un an alkaline material that reacts v Only purchased scrap material is Assumed costs (IEAGHG, 2013): Flux EUR 31/t (average of severa Purchased scrap EUR 222/t Ferroalloys EUR 1365-2150/t	full steelmaking p nd Daniels, 2019), it, and associated with impurities to included here; in il products)	1.30 0.03 0.13 0.13 rocess, from iror considering oxyg energy use is ind form a slag that ternal scrap is ex	Current 1.34 - 0.03 - 0.32 - 0.13 - n ore to hot rolle gen injection to cluded above. Fl can be easily sep scluded from thi	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy ux and scrap parated from s value.	Min Min Min I of about 110- gen furnace ar consumption o liquid crude st	2030 - - - - - - - - - - - - -	Max Max Max Max bic meters of ox enriched air blast cantly dependin purnt lime, limes	Min Min Min Min Sygen are neede t in the blast fu g on the final p stone, olivine an	2050 - - - - - - - ed per tonne of rnace. Oxygen roduct specific nd/or dolomite	Max Max Max Max Max of crude steel of sproduced cations. Flux is e are used.	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys Explanation	UnitPJPJPJMtonMtonIn and outputs are given for the r (IEAGHG 2013; Keys, van Hout ar on-site with an air separation un an alkaline material that reacts v Only purchased scrap material is Assumed costs (IEAGHG, 2013): Flux EUR 31/t (average of severa Purchased scrap EUR 222/t Ferroalloys EUR 1365-2150/t MEA solvent (make-up) EUR 163	full steelmaking p nd Daniels, 2019), it, and associated with impurities to s included here; in il products) 8/t	1.30 0.03 0.13 0.13 rocess, from iror considering oxy energy use is inc form a slag that ternal scrap is ex	Current 1.34 - 0.03 - 0.32 - 0.13 - 0.13 can be to hot rolled above. Flican be easily separately separ	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy ux and scrap parated from s value.	Min Min Min Min I of about 110- gen furnace ar consumption of liquid crude st	2030 - - - - - - - - - - - - -	Max Max Max Max bic meters of ox enriched air blast cantly dependin purnt lime, limes	Min Min Min Min tygen are neede t in the blast fu g on the final p	2050 - - - - - ed per tonne c rnace. Oxygen roduct specifie nd/or dolomite	Max Max Max Max of crude steel n is produced cations. Flux is e are used.	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys Explanation REFERENCES AND SOURCES	UnitPJPJMtonMtonIn and outputs are given for the state on-site with an air separation un an alkaline material that reacts verse only purchased scrap material is Assumed costs (IEAGHG, 2013):Flux EUR 31/t (average of several Purchased scrap EUR 222/tFerroalloys EUR 1365-2150/tMEA solvent (make-up) EUR 163	full steelmaking p nd Daniels, 2019), it, and associated with impurities to s included here; in I products) 8/t	1.30 0.03 0.13 0.13 0.13 rocess, from iror considering oxyg energy use is ino form a slag that ternal scrap is ex	Current 1.34 - 0.03 - 0.32 - 0.13 - ore to hot rolle gen injection to cluded above. Fl can be easily sep acluded from thi	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy ux and scrap parated from s value.	Min Min Min I of about 110- gen furnace ar consumption o liquid crude st	2030 - - - - - - - - - - - - -	Max Max Max Max bic meters of ox enriched air blast cantly dependin purnt lime, limes	Min Min Min Win Cygen are neede t in the blast fu g on the final p stone, olivine an	2050 - - - - - - - ed per tonne of rnace. Oxygen rroduct specific nd/or dolomite	Max Max Max Max of crude steel of cr	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys Explanation REFERENCES AND SOURCES IEAGHG (2013), "Iron and Steel CCS Str	Unit PJ PJ Mton Mton In and outputs are given for the (IEAGHG 2013; Keys, van Hout ar on-site with an air separation un an alkaline material that reacts v Only purchased scrap material is Assumed costs (IEAGHG, 2013): Flux EUR 31/t (average of severa Purchased scrap EUR 222/t Ferroalloys EUR 1365-2150/t MEA solvent (make-up) EUR 163 udy (Techno-economics Integrated S	full steelmaking p nd Daniels, 2019), it, and associated with impurities to included here; in il products) 8/t 5teel Mill)," https:/	1.30 0.03 0.13 0.13 rocess, from iror considering oxyg energy use is ind form a slag that ternal scrap is ex	Current 1.34 - 0.03 - 0.32 - 0.13 - n ore to hot rolled gen injection to cluded above. Fl can be easily selected from this cluded from the cl	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy ux and scrap parated from s value.	Min Min Min I of about 110- gen furnace ar consumption o liquid crude st	2030 - - - - - 130 normal cu nd an oxygen-e can vary signifi ceel. Typically b	Max Max Max Max bic meters of ox enriched air blast cantly dependin burnt lime, limes	Min Min Min Min tygen are neede t in the blast fu g on the final p tone, olivine an	2050 - - - - - - ed per tonne of rnace. Oxygen rroduct specifie nd/or dolomite	Max Max Max Max Max of crude steel o is produced cations. Flux is e are used.	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys Explanation REFERENCES AND SOURCES IEAGHG (2013), "Iron and Steel CCS Str CBS (2019), "Energiebalans; aanbod er	Unit PJ PJ Mton Mton In and outputs are given for the filler (IEAGHG 2013; Keys, van Hout ar on-site with an air separation un an alkaline material that reacts v Only purchased scrap material is Assumed costs (IEAGHG, 2013): Flux EUR 31/t (average of severa Purchased scrap EUR 222/t Ferroalloys EUR 1365-2150/t MEA solvent (make-up) EUR 163 udy (Techno-economics Integrated S in verbruik, sector", https://opendata	full steelmaking p nd Daniels, 2019), it, and associated with impurities to i included here; in il products) 8/t steel Mill)," https:/ a.cbs.nl/statline/p	1.30 0.03 0.13 0.13 rocess, from iror considering oxy energy use is ind form a slag that ternal scrap is ex	Current 1.34 - 0.03 - 0.32 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - cluded above. Fl can be easily sep ccluded from thi cs/General_Docs log=CBS&_la=nl	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy ux and scrap barated from s value.	Min Min Min I of about 110- gen furnace ar consumption of liquid crude st	2030 - - - - - - - - - - - - -	Max Max Max Max bic meters of ox enriched air blast cantly dependin purnt lime, limes	Min Min Min Min Cygen are neede t in the blast fu g on the final p tone, olivine an	2050 - - - - - ed per tonne c rnace. Oxygen roduct specifie nd/or dolomite	Max Max Max Max Max of crude steel n is produced cations. Flux is e are used.	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys Explanation REFERENCES AND SOURCES IEAGHG (2013), "Iron and Steel CCS Str CBS (2019), "Energiebalans; aanbod er Boston Consulting Group (2013), "Steel	Unit PJ PJ Mton Mton In and outputs are given for the state on-site with an air separation un an alkaline material that reacts wonly purchased scrap material is Assumed costs (IEAGHG, 2013): Flux EUR 31/t (average of severa Purchased scrap EUR 222/t Ferroalloys EUR 1365-2150/t MEA solvent (make-up) EUR 163 udy (Techno-economics Integrated State of the solvent material that solvent material that solvent make-up) EUR 163	full steelmaking p nd Daniels, 2019), it, and associated with impurities to included here; in il products) 8/t steel Mill)," https:/ a.cbs.nl/statline/p rope 2050," https:/	1.30 0.03 0.13 0.13 0.13 0.13 rocess, from iror considering oxy energy use is inc form a slag that ternal scrap is ex //ieaghg.org/doc ortal.html?_cata //www.bcg.com	Current 1.34 - 0.03 - 0.32 - 0.13 - n ore to hot rolle gen injection to cluded above. Fl can be easily sep scluded from thi cluded from thi	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy ux and scrap parated from s value. s/Reports/202 &tableId=835 013/metals-n	Min Min Min I of about 110- gen furnace ar consumption o liquid crude st	2030 - - - - - - - - - - - - -	Max Max Max Max bic meters of ox enriched air blast cantly dependin burnt lime, limes	Min Min Min Min Sygen are neede t in the blast fu g on the final p stone, olivine an carbon-europe-	2050 - - - - - - - ed per tonne of rnace. Oxygen roduct specific nd/or dolomite	Max Max Max Max Max of crude steel of sproduced cations. Flux is e are used.	
OTHER Parameter Electricity Oil Fluxes Scrap and ferroalloys Explanation REFERENCES AND SOURCES IEAGHG (2013), "Iron and Steel CCS Sti CBS (2019), "Energiebalans; aanbod er Boston Consulting Group (2013), "Stee European Commission (2016), "Iron pr	Unit PJ PJ Mton Mton In and outputs are given for the fileAGHG 2013; Keys, van Hout ar on-site with an air separation un an alkaline material that reacts w Only purchased scrap material is Assumed costs (IEAGHG, 2013): Flux EUR 31/t (average of severa Purchased scrap EUR 222/t Ferroalloys EUR 1365-2150/t MEA solvent (make-up) EUR 163 udy (Techno-economics Integrated S n verbruik, sector", https://opendataael's Contribution to a Low-Carbon Euroduction by electrochemical reduction	full steelmaking p nd Daniels, 2019), it, and associated with impurities to included here; in il products) 8/t steel Mill)," https:/ a.cbs.nl/statline/p rope 2050," https: ion of its oxide for	1.30 0.03 0.13 0.13 0.13 0.13 rocess, from iror considering oxyg energy use is ind form a slag that ternal scrap is ex //ieaghg.org/doc ortal.html?_cata //www.bcg.com high CO2 mitiga	Current 1.34 - 0.03 - 0.32 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - 0.13 - cluded above. Fl can be easily seg ccluded from thi cs/General_Docs log=CBS&_la=nl /publications/2 tion (IERO)."	1.34 0.03 0.32 0.18 ed coil. A tota the basic oxy ux and scrap parated from s value. 3/Reports/202 &tableId=839 013/metals-m	Min Min Min I of about 110- gen furnace ar consumption of liquid crude st	2030 - - - - - - - - - - - - -	Max Max Max Max bic meters of ox enriched air blast cantly dependin ournt lime, limes	Min Min Min Min Tygen are needed t in the blast fu g on the final p tone, olivine an tone, olivine an	2050 - - - - - - ed per tonne c rnace. Oxygen roduct specifie nd/or dolomite	Max Max Max Max Max of crude steel a is produced cations. Flux is e are used.	

Fischedicke et al. (2014), "Techno-economic evaluation of innovative steel production technologies."

OECD (2019), "Latest Developments in Steelmaking Capacity (July 2019)", https://www.oecd.org/industry/ind/recent-developments-steelmaking-capacity-2019.pdf.

World Steel (2019), "Steel Statistical Yearbook 2019 Concise version", downloaded from: https://www.worldsteel.org/en/dam/jcr:7aa2a95d-448d-4c56-b62b-b2457f067cd9/SSY19%2520concise%2520version.pdf.

ETSAP (2010), "Technology Brief I02: Iron and Steel", https://iea-etsap.org/E-TechDS/PDF/I02-Iron&Steel-GS-AD-gct.pdf.

A. Keys, M. van Hout, and B. Daniëls (2019), "Decarbonisation Options for the Dutch Steel Industry," MIDDEN report, https://www.pbl.nl/sites/default/files/downloads/pbl-2019-decarbonisation-options-for-the-dutch-steel-

N. Pardo, J. Moya and K. Vatopoulos (2012), "Prospective Scenarios on Energy Efficiency and CO2 Emissions in the EU Iron & Steel Industry." JRC. http://publications.europa.eu/resource/cellar/69893c31-b50a-11e5-8d3c-01aa75ed71a1.0001.03/DOC_1.

Tata Steel (2018), "Sustainability Performance: Tata Steel in the Netherlands",

https://www.tatasteeleurope.com/static_files/Documents/Corporate/Sustainability/Reporting/2019%2028%2005%20NL%20TS%20Fact%20Sheet%20Sustainabilty%20report%20Final.pdf.

Planbureau voor de Leefomgeving (Netherlands Environmental Assessment Agency) (2009), "Greenhouse Gas Emissions in the Netherlands 1990-2007."