TECHNOLOGY FACTSHEET

TNO

PYROLYSIS OIL PRODUCT	TION FROM PLASTIC W	/ASTE									
Date of factsheet	23-12-2019 (28-09-2020 updated)										
Author Sector	Carina Oliveira Industry: Petrochemics										
ETS / Non ETS	ETS										
Type of Technology	Circular economy										
Description	Pyrolysis is a process where plastic is process takes place in four stages: in reactor, in an inert atmosphere, at a depending on the heating rate and condensable and non-condensable produce heat to the pyrolysis reacti components are hydrogen, C1, C2, C gases), no external source of heat is hydrogen chloride is also produced Waste Plastic Pyrolysis Cha	s thermally crach nitiation, transfe atmospheric pre- the composition gases. The conco- on. The non-con- C3 and C4 hydro needed and a se and it requires of pyrolysis urs sis separation Char	cked due to rap er, decompositi essure and at a n of the plastic lensable gases o ndensable gas o ocarbons. The p surplus of heat chlorine remova Pyrolysis vapours Fuel Collecti Syster	id heating in th on and termina fixed reaction t waste. The reac deliver the oil co omposition dep yrolysis therma can be delivere al before this ga Pyrolysis Fuel Product Non condensable gases	e absence of o ation, resulting emperature. T ation temperat omposed by th pends on the n l energy dema d outsite the s as can be used	xygen, reducing in the producti hermal cracking ure influences of nermal cracking nixture of plasti nd is provided b ystem. Howeve . Figure by Fivg	g the plastics lo on of vapours g of plastics can directly the pyr products. Cha c waste that is by combusting r, electricity do a & Dimitriou (ong polymer ch and char. The p n occur within t rolysis product r is a solid prod s pyrolyzed, alth the pyrolysis b emand should b (2018).	ains into much s byrolysis process the temperature yields. The pyro luct rich in carbo nough some stud y-products (i.e. be outsourced. I	shorter hydrod s occurs in a fli e range of 450 lysis vapours i on which can b dies say that tl char, non-con f PVC is includ	carbons. The uidised bed -650 °C, nclude both be used to ne main gas densable ed in the mix,
	Heat	Combustion									
TRL level 2020	TRL 6 Demo plants were constructed in th Currently, several large petrochemi building together a demo-plant in T which the latter would supply plasti its products by 2025 (Dow website, be able to use 1000 kton/y of plasti	e 90's by BP an cals companies he Netherlands c waste oil to th 2020) . Nexus F c waste globally	d BASF and the are developing to produce 20 ne steam cracke uels LLC started by 2025 (Shell	n decommissio partnerships w kton/y of plasti ers of Dow locat l supplying plas website, 2020)	ned due to low ith plastic was c waste oil by 2 ed in Terneuze stic waste oil to	v availability of f ste pyrolysis oil 2021 (SABIC we en, The Netherl o Shell's chemic	feedstock. The providers or te bsite, 2019). D ands. Dow's go al plant in Nor	capacity range echnology deve ow made an ag pal is to be able rco, Louisiana, l	e of these plants lopers. PLATIC E greement with F to incorporate JSA in 2019. She	was 15-25 ktc ENERGY and SA uenix Ecogy G 100 ktons of p ell claims their	on/y. ABIC are roup under lastic waste in ambition is to
TECHNICAL DIMENSIONS											
Capacity	Functional Unit					Va	alue and Rang	e			
Сараску				0.88			-			0.88	
Potential	EU	kton	15.00	Current 15.00 -	25.00	120.00	2030 120.00 –	120.00	Min	2050 - -	Мах
Market share		%	Min	-	Мах	Min	-	Max	Min	-	Max
Capacity utlization factor					INIGA			Max	0.90		WIGA
Full-load running hours per year Unit of Activity	kton/vear							7,0	012.00		-
Technical lifetime (years)								3	30.00		
Progress ratio Hourly profile	Νο								0.75		
Explanation	One of the most important pyrolysis Scotland with a capacity of 25 kton, System Deutschland) green dot pac estimated the total volume of mixe kton/yr, but decided in 1996 to shu Salem et al., 2009). By 2025 it is exp Capacity in this factsheet is based o considered.	s processes is th year in the refin kaging collectio d packaging pla tdown the pilot ected that both n SABIC's demo	ne BP polymer connery complex connery complex conners available for plant, since no SABIC and Down plant and it ref	racking proces urrently owned ge pilot plant, w or feedstock re- agreement cou v will be proces fers to plastic	s (Tukker et al. by INEOS. This vith a substant cycling at arou ild be reached sing together waste input (20	, 1999). After a s process was de ial capacity of 1 nd 750 kton/yr. on a guarantee around 120 kt/γ 0 kt/yr); a low h	series of pilot esigned to han 5 kton/yr, sta BASF offered d long-term w of pyrolysis p eating value (I	trials (between idle mixed plast rted running at to erect a full-s vaste supply and plastic waste oil LHV) of 44.06 N	1994 and 1998 tic waste, as sup cale industrial p d a gate fee suff I in their steam JJ/kg (Fivga & D), a plant was plied by the D n 1994. At tha lant with a ca icient to cover crackers in the imitriou, 2018	established in SD (Duales t time DSD pacity of 300 the costs (Al- Netherlands.) was
COSTS Year of Euro	2015										
	Euro per Functional U	nit	Current				2030		2050		
Investment costs	mln. € / PJ		9.40	9.40	9.40	9.03	9.03	9.03	8.33	8.33 -	8.33
Other costs per year	mln. € / PJ		Min	-	Мах	Min	-	Мах	Min	-	Мах
(excl. fuel costs)	min. €/ PJ		2.74	-	2.74	2.60	-	2.60	2.33	-	2.33
Variable costs per year	mln. € /		Min	-	Max	Min	-	Max	Min	-	Max
Costs explanation	Costs include all the steps shown in PJ of plastic waste intake/ year, this 2020 and 2050. The reduction in cos economies of scale for this technolo	the process sch is equivalent to sts is based on t ogy behaves.	neme presented o around 20 kto the progress rat	. Fixed operation n/year. For the io of 0.75, which	following the h was calculat	s not consider u years, the costs ed considering	tilities and fee were calculate the informatio	edstock. For 202 ed assuming ca n found in Fivig	20, the capacity pacity growth o ga & Dimitriou (2	value conside f 10% per 10 y 2018) about ho	red was 0.88 rears between ow the
ENERGY IN- AND OUTPUTS	Fnerov carrier	Unit		Current			2030			2050	
	Main output: Plastics pyrolysis oil	РЈ	-1.00	-1.00 -	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
Energy carriers (per unit of main output)	Heat	PJ	-0.11	-0.11	-0.11	-0.11	-0.11	-0.11	-0.11	-0.11	-0.11
	Plastics waste mix	РЈ	1 15	1.15	1 15	1 15	1.15	1 15	1 15	1.15	1 15
	Electricity	рј	1.13	0.03	1.13	C1.1	0.03	.1.3	1.13	0.03	1.13
Energy in- and Outputs explanation	A low heating value (LHV) of 44.06 I Same authors state that the mass y benefits derived from economies of the ratios for inputs and outputs pe	MJ/kg was cons elds and pyroly scale (i.e. prod r main output a	0.03 sidered for the p sis fuel energy uction cost redu re considered c	– plastic waste in efficiency of the uctions due to e onstant along t	0.03 put and, for th e entire system expenditures, l he years, desp	0.03 e plastic pyrolys n does not char ike labour and e bite the reductio	– sis oil, the LHV nge with scalin equipment, sp on cost project	0.03 considered wa g-up. The scale reading out ove ion.	0.03 s 44.6 MJ/kg (F -up study invest er more units of	iviga & Dimitri igates the ecc output). For t	0.03 ou, 2018). nomic his reason,

MATERIAL FLOWS (OPTIONAL)												
	Material	Unit	Current -				2030		2050			
						-			-			
Material flows			Min	-	Мах	Min	-	Мах	Min	-	Мах	
			1	-			-			-		
			Min	-	Max	Min	-	Мах	Min	-	Мах	
Material flows explanation		ł	. <u>4</u> ·	<u> </u>							1	
EMISSIONS (Non-fuel/energy-related e	missions or emissions reduction	s (e.g. CCS)										
	Substance	Current			2030				2050			
	CO2	kton		9.03			11.57			11.57		
			9.03	-	9.03	11.57	-	11.57	11.57	-	11.57	
				-			-	1		-	1	
Emissions			Min	-	Max	Min	-	Мах	Min	-	Мах	
				-			-	1		-	1	
			Min	-	Max	Min	-	Мах	Min	-	Мах	
			1	-			-	•		-	I	
			Min	_	Мах	Min	_	Мах	Min	_	Мах	
Emissions explanation	18.9 MJ/kg). Also, the emission Values are constant over time b	factors assumed we	ere 61.60 kg CO	2/GJ for the n	on-condensable	e gases and 96.2	1 kg CO2/GJ fo	or char.			(
OTHER	No information on emissions of	other pollutants (e	e.g. NOx, SOx) w	ras found in the	be constant. e literature.							
OTHER Parameter	No information on emissions of Unit	other pollutants (e	e.g. NOx, SOx) w	considered to	be constant. e literature.		2030			2050		
OTHER Parameter	No information on emissions of Unit	other pollutants (e	e.g. NOx, SOx) w	Current	be constant. e literature.		2030			2050		
OTHER Parameter	No information on emissions of Unit	other pollutants (e	e.g. NOx, SOx) w	Current -	be constant. e literature.	Min	2030 - -	Мах	Min	2050 - -	Max	
OTHER Parameter	No information on emissions of Unit	other pollutants (e	Min	Current - - -	be constant. e literature.	Min	2030 - - -	Мах	Min	<mark>2050</mark> - - -	Max	
OTHER Parameter	No information on emissions of Unit	other pollutants (e	Min	Current - - - - -	Max	Min Min	2030 - - - -	Max Max	Min Min	2050 - - - -	Max Max	
OTHER Parameter	No information on emissions of Unit	other pollutants (e	Min Min	Current - - - - - -	be constant. e literature. Max Max	Min Min	2030 - - - - -	Max Max	Min Min	2050 - - - - - -	Max Max	
OTHER Parameter	No information on emissions of Unit	other pollutants (e	Min Min Min	Current	be constant. e literature. Max Max Max	Min Min Min Min	2030 - - - - - - - -	Max Max Max	Min Min Min Min	2050 - - - - - - - -	Max Max Max	
OTHER Parameter	No information on emissions of Unit	other pollutants (e	Min Min Min	Current	be constant. e literature. Max Max Max	Min Min Min Min	2030 - - - - - - - - - -	Max Max Max	Min Min Min Min	2050 - - - - - - - - - -	Max Max Max	
OTHER Parameter	No information on emissions of Unit	other pollutants (e	Min Min Min Min	Current	be constant. e literature. Max Max Max Max	Min Min Min Min Min	2030	Max Max Max Max	Min Min Min Min Min	2050 - - - - - - - - - - - - - -	Max Max Max	
OTHER Parameter	No information on emissions of Unit	other pollutants (e	Min Min Min Min	Current - - - - - - - - -	be constant. e literature. Max Max Max Max	Min Min Min Min Min	2030 - - - - - - - - - - -	Max Max Max Max	Min Min Min Min Min	2050 - - - - - - - - - -	Max Max Max Max	
OTHER Parameter Explanation REFERENCES AND SOURCES	No information on emissions of Unit Unit	other pollutants (e	Min Min Min	Current - - - - - - - - -	be constant. e literature. Max Max Max Max	Min Min Min Min Min	2030 - - - - - - - - -	Max Max Max Max	Min Min Min Min Min	2050 - - - - - - - -	Max Max Max Max	
OTHER Parameter Explanation REFERENCES AND SOURCES Fiviga. A Dimitriou, I., "Pyrolysis of plast	No information on emissions of Unit Unit	fuel substitute: A to	Min Min Min echno-economi	Current - - - - - - - - -	be constant. e literature. Max Max Max Max	Min Min Min Min 018	2030 - - - - - - -	Max Max Max Max	Min Min Min Min Min	2050 - - - - - - - -	Max Max Max Max	
OTHER Parameter Explanation REFERENCES AND SOURCES Fiviga, A., Dimitriou, I., "Pyrolysis of plass Al-Salem et al. "Recycling and recovery r	No information on emissions of Unit Unit	fuel substitute: A to): A review", Waste	e.g. NOx, SOx) w	Current - - - - - - - - -	be constant. e literature. Max Max Max Max	Min Min Min Min 018	2030 - - - - - - - - -	Max Max Max Max	Min Min Min Min	2050 - - - - - - - - -	Max Max Max Max	
OTHER Parameter Explanation REFERENCES AND SOURCES Fiviga, A., Dimitriou, I., "Pyrolysis of plass Al-Salem et al, "Recycling and recovery r Tukker et al., "Chemical Recycling of Plass	No information on emissions of Unit Unit	fuel substitute: A to): A review", Waste)". TNO report , 199	Min Min Min Min Min Min Management 2	Current - - - - - - - - -	be constant. e literature. Max Max Max ', Energy 149, 20	Min Min Min Min 018	2030 - - - - - - -	Max Max Max Max	Min Min Min Min	2050 - - - - - - - -	Max Max Max Max	
OTHER Parameter Explanation REFERENCES AND SOURCES Fiviga, A., Dimitriou, I., "Pyrolysis of plass Al-Salem et al, "Recycling and recovery r Tukker et al., "Chemical Recycling of Plass SABIC website (access 2019) https://www	No information on emissions of Unit Unit	fuel substitute: A to): A review", Waste)", TNO report , 199 ic-pioneers-first-pro	Min Min Min Min Min Min Min Min Min Min	Current - - - - - - - - -	be constant. e literature. Max Max Max ', Energy 149, 20 polymers	Min Min Min Min	2030 - - - - - - - - -	Max Max Max	Min Min Min Min	2050 - - - - - - - -	Max Max Max	
OTHER Parameter Explanation REFERENCES AND SOURCES Fiviga, A., Dimitriou, I., "Pyrolysis of plast Al-Salem et al, "Recycling and recovery r Tukker et al., "Chemical Recycling of Plast SABIC website (access 2019) https://www Dow website (access 2020) https://corpo	No information on emissions of Unit Unit	fuel substitute: A to): A review", Waste)", TNO report , 199 ic-pioneers-first-pro	Min Min Min Min Min Min Min Min Min Min	Current - - - - - - - - -	be constant. e literature. <i>Max</i> <i>Max</i> <i>Max</i> ', Energy 149, 20 polymers hip-for-the-proc	Min Min Min Min 018	2030 - - - - - - - - - - - - -	Max Max Max Max	Min Min Min Min	2050 - - - - - - - - - -	Max Max Max	