TECHNOLOGY FACTSHEET

TNO

Date of factsheet Author Sector	5-6-2019												
Author Sector	5-6-2019												
	Marc Marsidi Hydrogen supply												
ETS / Non-ETS	Non-ETS												
Type of Technology	Electrolysis												
Description	Proton-exchange membrane or poly cells, that are connected in series to production are the (petro) chemical	Proton-exchange membrane or polymer electrolyte membrane (PEM) electrolysis technology produces hydrogen from water using electricity. The electrolysis reaction takes place in cells, that are connected in series to make units (called a 'stack'). An installation generally consist of multiple stacks. Sectors that have shown interest in (sustainable) hydrogen production are the (petro) chemical sector and the fertilizer sector (Berenschot, 2017).											
	PEM operates at a temperature of around 60-70 °C (Weeda, 2018). Electricity is used to split water (H2O) into oxygen (O2) and hydrogen (H2). The technology consists on one side of a positive terminal (anode), where water (H2O) reacts with a catalyst to form oxygen, electrons (e-) and hydrogen protons (H+). The hydrogen protons are then conducted across the polymer electrolyte membrane. At the negative terminal (cathode) of the installation, the electrons then combine with the hydrogen protons to produce hydrogen (SA, 2014). PEM uses a polymeric membrane that has a high proton conductivity when the membrane is hydrated (Feroldi & Basualdo, 2012).												
	A PEM installation can produce hyd pressure of 80 bar is necessary for in passenger vehicles (De Vita et al., 20 could potentially reach 110 bar by 2	A PEM installation can produce hydrogen at a pressure of 5-50 bar (ECN, 2018), which can subsequently be further compressed to 80-950 bar to reduce the need for storage capacity. A pressure of 80 bar is necessary for injection in the natural gas network, whereas a pressure of 350-950 bar is necessary for using hydrogen in transport, for example in trucks and passenger vehicles (De Vita et al., 2018). Note that for almost all applications hydrogen needs to be compressed. According to NOW (2018), the pressure output of a PEM installation could potentially reach 110 bar by 2050. The potential for PEM is high, however it is currently considered not economically feasible due to, amongst others, the high CAPEX (currently estimated around four times higher than economically viable). The levelised costs of hydrogen by electrolysis is about 5 €/kg (baseload production), which compares unfavourably with the cost of hydrogen from natural gas at 1-1.5 €/kg using steam methane reforming (SMR) (Berenschot, 2017).											
	The potential for PEM is high, howe economically viable). The levelised 1-1.5 €/kg using steam methane ref												
TRL level 2020	TRL 8 PEM electrolysis has been commercially available for about 10 years (E4tech, 2014), however according to De Vita et al. (2018), the technology is not yet at full industrial scale (TRL 8).										scale (TRL 8).		
TECHNICAL DIMENSIONS													
	Functional Unit					V	alue and Ran	ge					
Capacity	MW-H2-LHV-output					r	2.88						
		וח		1.27			-			2.88			
Potential	NL	PJ	Current			2030			2050				
			Min	_	Мах	Min	_	Мах	Min	_	Мах		
Market share		%		-			-	-		-			
			Min	-	Max	Min	-	Max	Min	-	Max		
Capacity utlization factor											0.97		
Full-load running hours per year											8497.00		
Unit of Activity	PJ/year										0.03		
Technical lifetime (years)											20-30		
Progress ratio	No										0.79		
Fourier profile	The typical small-scale installation s		ith stacks of 0 1		CN 2010) A	2 2 MANA install	ation is monti	anad in Undrag	(2016) Th		C II		
	scale PEM installation is 108-300m2 Hydrogen can be used to produce s mostly produced via steam methan	2 (ECN, 2018) . team, electricity e reforming (SM	<i>y</i>, high tempera<i>i</i> or by refine	25 – 1.25 MW (ture heat, and ries using press	act as transpo ure swing ads	ort fuel. The proc orption (PSA).	duced hydrogo	en can also dire	ctly replace curr	e required are ent hydrogen	a for a small-		
	scale PEM installation is 108-300m2 Hydrogen can be used to produce s mostly produced via steam methan A PEM installation can be used as be electricity like an offshore wind parl The cell stacks have a technical lifet 30 years (LBST 2015), which means	2 (ECN, 2018) . team, electricity e reforming (SN aseload product k). time of around 7 the cell stacks i	y, high tempera 1R) or by refine tion (>8000 hou 7 years, which is need to replace	ture heat, and ries using press irs per year) (Hi s expected to ir d at least once	act as transpo ure swing ads ydrogenics, 20 acrease to up f within the life	ort fuel. The proc orption (PSA). 116) or as flexible to 10 years (SA, etime of the inst	duced hydrogo e production (2014). The ins allation.	en can also dire e.g. when conn tallation itself h	enics (2016). The ctly replace curr lected to an inte has a technical lif	ent hydrogen rmittent sourc	a for a small- consumption ce of ECN, 2018) to		
	scale PEM installation is 108-300m2 Hydrogen can be used to produce s mostly produced via steam methan A PEM installation can be used as be electricity like an offshore wind parl The cell stacks have a technical lifet 30 years (LBST 2015), which means	2 (ECN, 2018) . team, electricity e reforming (SN aseload product k). time of around 7 the cell stacks i	y, high tempera 1R) or by refine tion (>8000 hou 7 years, which is need to replace	ture heat, and ries using press rrs per year) (Hu s expected to ir d at least once	act as transpo ure swing ads ydrogenics, 20 hcrease to up f within the life	ort fuel. The proc orption (PSA). 16) or as flexible to 10 years (SA, etime of the inst	duced hydrogo e production (2014). The ins allation.	en can also dire e.g. when conn tallation itself h	enics (2016). The ctly replace curr lected to an inte	ent hydrogen rmittent sourc	a for a small- consumption ce of CN, 2018) to		
	scale PEM installation is 108-300m2 Hydrogen can be used to produce s mostly produced via steam methan A PEM installation can be used as be electricity like an offshore wind parl The cell stacks have a technical lifet 30 years (LBST 2015), which means The investment cost of PEM electro	2 (ECN, 2018) . team, electricity e reforming (SM aseload product k). time of around 7 the cell stacks in plysis are expect	y, high tempera IR) or by refine tion (>8000 hou years, which is need to replace ed to decrease.	ture heat, and ries using press irs per year) (H ⁱ s expected to ir d at least once Detz et al. (20	act as transpo ure swing ads ydrogenics, 20 crease to up t within the life	ort fuel. The proc orption (PSA). 116) or as flexible to 10 years (SA, etime of the inst	duced hydrogo e production (2014). The ins allation. 6 .	en can also dire e.g. when conn tallation itself h	enics (2016). The ctly replace curr lected to an inte has a technical lif	ent hydrogen rmittent sourc	a for a small- consumption ce of CN, 2018) to		
COSTS Voar of Euro	scale PEM installation is 108-300m2 Hydrogen can be used to produce s mostly produced via steam methan A PEM installation can be used as be electricity like an offshore wind parl The cell stacks have a technical lifet 30 years (LBST 2015), which means The investment cost of PEM electro	2 (ECN, 2018) . team, electricity e reforming (SM aseload product k). time of around 7 the cell stacks i olysis are expect	y, high tempera IR) or by refine tion (>8000 hou years, which is need to replace ed to decrease.	ture heat, and ries using press irs per year) (Hi s expected to ir d at least once Detz et al. (20	act as transpo ure swing ads ydrogenics, 20 acrease to up f within the life 18) uses a lear	ort fuel. The proc orption (PSA). 116) or as flexible to 10 years (SA, etime of the inst ming rate of 219	duced hydrogo e production (2014). The ins allation. 6 .	en can also dire e.g. when conn tallation itself h	enics (2016). The ctly replace curr lected to an inte has a technical lif	ent hydrogen rmittent sourc	a for a small- consumption ce of CN, 2018) to		
COSTS Year of Euro	scale PEM installation is 108-300m2 Hydrogen can be used to produce so mostly produced via steam methan A PEM installation can be used as be electricity like an offshore wind part The cell stacks have a technical lifet 30 years (LBST 2015), which means The investment cost of PEM electro 2015	2 (ECN, 2018) . team, electricity e reforming (SM aseload product k). time of around 7 the cell stacks i olysis are expect nit	y, high tempera IR) or by refine tion (>8000 hou y years, which is need to replace ed to decrease.	25 – 1.25 MW (ture heat, and ries using press irs per year) (Hv s expected to ir d at least once Detz et al. (20 Current	act as transpo ure swing ads ydrogenics, 20 acrease to up f within the life	ort fuel. The proc orption (PSA). 16) or as flexible to 10 years (SA, etime of the inst	duced hydrogo e production (2014). The ins allation. 6 . 2030	en can also dire e.g. when conn tallation itself h	enics (2016). The ctly replace curr lected to an inte has a technical lif	ent hydrogen rmittent sourc fetime of 20 (E	a for a small- consumption ce of ECN, 2018) to		
COSTS Year of Euro Investment costs	scale PEM installation is 108-300m2 Hydrogen can be used to produce so mostly produced via steam methan A PEM installation can be used as be electricity like an offshore wind part The cell stacks have a technical lifet 30 years (LBST 2015), which means The investment cost of PEM electron 2015 Euro per Functional Un mln. € / MW-H2-LHV-outg	2 (ECN, 2018) . team, electricity e reforming (SM aseload product k). time of around 7 the cell stacks i olysis are expect nit put	y, high tempera 1R) or by refine tion (>8000 hou 7 years, which is need to replace ed to decrease.	ture heat, and ries using press irs per year) (H ⁱ s expected to ir d at least once Detz et al. (20 <u>Current</u> 1.85	act as transpo ure swing ads ydrogenics, 20 hcrease to up within the life 18) uses a lean	ort fuel. The proc orption (PSA). 116) or as flexible to 10 years (SA, etime of the inst ming rate of 219	duced hydrogo e production (2014). The ins allation. 6 . 2030 1.43	en can also dired e.g. when conn tallation itself h	ctly replace curr ected to an inte has a technical lif	ent hydrogen rmittent sourd fetime of 20 (E 2050 1.26	a for a small- consumption ce of ECN, 2018) to		
COSTS Year of Euro Investment costs	scale PEM installation is 108-300m2 Hydrogen can be used to produce so mostly produced via steam methan A PEM installation can be used as be electricity like an offshore wind part The cell stacks have a technical lifet 30 years (LBST 2015), which means The investment cost of PEM electro 2015 2015 Euro per Functional Un mln. € / MW-H2-LHV-outp	2 (ECN, 2018) . team, electricity e reforming (SM aseload product k). time of around 7 the cell stacks i olysis are expect nit put	y, high tempera 1R) or by refine tion (>8000 hou 7 years, which is need to replace ed to decrease.	ture heat, and ries using press rrs per year) (H s expected to ir d at least once Detz et al. (20 Current 1.85 –	act as transpo ure swing ads ydrogenics, 20 hcrease to up f within the life 18) uses a lean 2.60	ort fuel. The proc orption (PSA). 16) or as flexible to 10 years (SA, etime of the inst ming rate of 219 0.61	duced hydrogo e production (2014). The ins allation. 6 . 2030 1.43 –	en can also dired e.g. when conn tallation itself h	ctly replace curr ected to an inte has a technical lif	ent hydrogen rmittent sourc fetime of 20 (E 2050 1.26 –	a for a small- consumption ce of ECN, 2018) to 1.26		
COSTS Year of Euro Investment costs Other costs per year	scale PEM installation is 108-300m2 Hydrogen can be used to produce so mostly produced via steam methan A PEM installation can be used as be electricity like an offshore wind part The cell stacks have a technical lifet 30 years (LBST 2015), which means The investment cost of PEM electron 2015 2015 Euro per Functional Un mln. € / MW-H2-LHV-outp mln. € / MW-H2-LHV-outp	2 (ECN, 2018) . team, electricity e reforming (SM aseload product k). time of around 7 the cell stacks i olysis are expect nit put	y, high tempera 1R) or by refine tion (>8000 hou 7 years, which is need to replace ed to decrease.	ture heat, and ries using press irs per year) (Hi s expected to ir d at least once Detz et al. (20 Current 1.85 –	act as transpo ure swing ads ydrogenics, 20 hcrease to up f within the life 18) uses a lean 2.60	ort fuel. The proc orption (PSA). 16) or as flexible to 10 years (SA, etime of the inst ming rate of 219 0.61	duced hydrogo e production (2014). The ins allation. 6 . 2030 1.43 – –	en can also dire e.g. when conn tallation itself h	ctly replace curr ected to an inte has a technical lif	ent hydrogen rmittent sourc fetime of 20 (E 2050 1.26 – –	a for a small- consumption ce of CCN, 2018) to 1.26		
COSTS Year of Euro Investment costs Other costs per year	scale PEM installation is 108-300m2 Hydrogen can be used to produce so mostly produced via steam methan A PEM installation can be used as be electricity like an offshore wind part The cell stacks have a technical lifet 30 years (LBST 2015), which means The investment cost of PEM electro 2015 2015 Euro per Functional Un mln. € / MW-H2-LHV-outp mln. € / MW-H2-LHV-outp	2 (ECN, 2018). team, electricity e reforming (SM aseload product k). time of around 7 the cell stacks in olysis are expect nit put	y, high tempera 1R) or by refine tion (>8000 hou 7 years, which is need to replace ed to decrease.	ture heat, and ries using press urs per year) (Hu s expected to ir d at least once Detz et al. (20 Current 1.85 – – –	act as transpo ure swing ads ydrogenics, 20 hcrease to up 1 within the life 18) uses a lean 2.60 Max	ort fuel. The proc orption (PSA). 16) or as flexible to 10 years (SA, etime of the inst ming rate of 219 0.61 <i>Min</i>	duced hydrogo e production (2014). The ins allation. 6 . 2030 1.43 – – –	en can also dire e.g. when conn tallation itself h	ctly replace curr ected to an inte has a technical lif	ent hydrogen rmittent source fetime of 20 (E 2050 1.26 – – – –	a for a small- consumption ce of CCN, 2018) to 1.26 Max		
COSTS Year of Euro Investment costs Other costs per year Fixed operational costs per year (excl. fuel costs)	scale PEM installation is 108-300m2 Hydrogen can be used to produce so mostly produced via steam methan A PEM installation can be used as bacelectricity like an offshore wind part The cell stacks have a technical lifet 30 years (LBST 2015), which means The investment cost of PEM electro 2015 2015 Euro per Functional Un mln. € / MW-H2-LHV-outp mln. € / MW-H2-LHV-outp mln. € / MW-H2-LHV-outp	2 (ECN, 2018) . team, electricity e reforming (SM aseload product k). time of around 7 the cell stacks in olysis are expect nit put put	y, high tempera IR) or by refine tion (>8000 hou years, which is need to replace ed to decrease.	ture heat, and ries using press urs per year) (Hu s expected to ir d at least once Detz et al. (20 Current 1.85 – – – 0.10 –	act as transpo ure swing ads ydrogenics, 20 hcrease to up f within the life 18) uses a lean 2.60 Max 0	ort fuel. The proc orption (PSA). 16) or as flexible to 10 years (SA, etime of the inst ming rate of 219 0.61 <i>Min</i> 0	duced hydrogo e production (2014). The ins allation. 6 . 2030 1.43 – – – 0.08 –	en can also direc (e.g. when conn tallation itself h	ctly replace curr ected to an inte has a technical lif	ent hydrogen rmittent source fetime of 20 (E 2050 1.26 – – – 0.06 –	a for a small- consumption ce of CCN, 2018) to 1.26 Max 0		
COSTS Year of Euro Investment costs Other costs per year Fixed operational costs per year (excl. fuel costs)	scale PEM installation is 108-300m2 Hydrogen can be used to produce so mostly produced via steam methan A PEM installation can be used as bacelectricity like an offshore wind part The cell stacks have a technical lifet 30 years (LBST 2015), which means The investment cost of PEM electron 2015 2015 Euro per Functional Un mln. € / MW-H2-LHV-outp mln. € / MW-H2-LHV-outp mln. € / MW-H2-LHV-outp mln. € / MW-H2-LHV-outp	2 (ECN, 2018) . team, electricity e reforming (SM aseload product k). time of around 7 the cell stacks in plysis are expect nit put put put	y, high tempera IR) or by refine tion (>8000 hou 7 years, which is need to replace ed to decrease.	ture heat, and ries using press urs per year) (Hu s expected to ir d at least once Detz et al. (20 Current 1.85 - - - 0.10 - -	act as transpo ure swing ads ydrogenics, 20 hcrease to up f within the life 18) uses a lean 2.60 Max 0	ort fuel. The proc orption (PSA). 16) or as flexible to 10 years (SA, etime of the inst ming rate of 219 0.61 <i>Min</i> 0	duced hydrogo e production (2014). The ins allation. 6 . 2030 1.43 – – 0.08 – – 0.08 – –	en can also direc (e.g. when conn tallation itself h	ctly replace curr ected to an inte has a technical lif	ent hydrogen rmittent source fetime of 20 (E 2050 1.26 – – – 0.06 – – 0.06 –	a for a small- consumption ce of CN, 2018) to 1.26 Max 0		
COSTS Year of Euro Investment costs Other costs per year Fixed operational costs per year (excl. fuel costs) Variable costs per year	scale PEM installation is 108-300m2 Hydrogen can be used to produce so mostly produced via steam methan A PEM installation can be used as bacelectricity like an offshore wind part The cell stacks have a technical lifet 30 years (LBST 2015), which means The investment cost of PEM electron 2015 2015 Euro per Functional Union mln. € / MW-H2-LHV-outp mln. € / MW-H2-LHV-outp mln. € / MW-H2-LHV-outp mln. € / MW-H2-LHV-outp	2 (ECN, 2018) . team, electricity e reforming (SM aseload product k). time of around 7 the cell stacks i olysis are expect nit put put put	y, high tempera IR) or by refine tion (>8000 hou 7 years, which is need to replace ed to decrease. 1.27 <i>Min</i> 0 <i>Min</i>	25 – 1.25 MW (ture heat, and ries using press urs per year) (Hu s expected to ir d at least once Detz et al. (20 Current 1.85 – – – – 0.10 – – 0.10 –	act as transpo ure swing ads ydrogenics, 20 hcrease to up t within the life 18) uses a lean 2.60 Max 0	ort fuel. The proc orption (PSA). D16) or as flexible to 10 years (SA, etime of the inst ming rate of 219 0.61 Min	duced hydrogo e production (2014). The ins allation. 6 . 2030 1.43 – – – – 0.08 – – – 0.08 – –	en can also direction itself h tallation itself h	enics (2016). The ctly replace curr lected to an inte has a technical lif 0.30 Min 0	ent hydrogen rmittent source fetime of 20 (E 2050 1.26 – – – 0.06 – – – 0.06 – –	a for a small- consumption ce of CN, 2018) to 1.26 Max 0 Max		
COSTS Year of Euro Investment costs Other costs per year Fixed operational costs per year (excl. fuel costs) Variable costs per year	scale PEM installation is 108-300m2 Hydrogen can be used to produce so mostly produced via steam methan A PEM installation can be used as ba- electricity like an offshore wind part The cell stacks have a technical lifet 30 years (LBST 2015), which means The investment cost of PEM electron 2015 2015 Euro per Functional Ua mln. € / MW-H2-LHV-outp mln. € / MW-H2-LHV-outp	2 (ECN, 2018) . team, electricity e reforming (SM aseload product k). time of around 7 is the cell stacks in olysis are expect nit put put put s section refer t	<pre>/, high tempera IR) or by refine IR</pre>	ture heat, and ries using press irs per year) (Hi s expected to ir d at least once Detz et al. (20 Current 1.85 - - - 0.10 - - - nt cost only.	act as transpo ure swing ads ydrogenics, 20 acrease to up f within the life 18) uses a lear 2.60 <u>Max</u>	ort fuel. The proc orption (PSA). 16) or as flexible to 10 years (SA, etime of the inst ming rate of 219 0.61 Min 0 Min	duced hydrogo e production (2014). The ins allation. 6 . 2030 1.43 - - 0.08 - - - 0.08	en can also direc (e.g. when conn tallation itself h 1.70 Max 0 Max	enics (2016). The ctly replace curr ected to an inte nas a technical lif 0.30 Min 0 Min	ent hydrogen rmittent sourd fetime of 20 (E 2050 1.26 – – – 0.06 – – –	a for a small- consumption ce of CN, 2018) to 1.26 Max 0 Max		

ENERGY IN- AND OUTPUTS											
	Energy carrier	Unit	Current				2030		2050		
Energy carriers (per unit of main output)	Main output:	DI	-1.00			-1.00			-1.00		
	Hydrogen	РJ	-1.00	-	-1.00	-1.00	-	-1.00	-1.00	-	-1.00
	Electricity	PJ		1.56			1.70	-		1.67	
			1.56	_	1.85	1.57	_	1.70	1.47	_	1.67
		PI		-			-			-	
		1.7	Min	-	Max	Min	-	Max	Min	-	Max
		PI		-			-			-	
		1.5	Min	-	Max	Min	-	Max	Min	-	Max
Energy in- and Outputs explanation	Hydrogenics (2016) assumes an effic According to NOW (2018), the curre The conversion of kWhe/kg-H2 to P.	ciency of 5.2 kV ent efficiency is Je/PJ-H2 is base	Vh/m3 (57.8 kW 4.8 kWh/m3-H ed on multiplyir	Vh/kg) in 2015, 2, lowering to 4 ng times 3.6 MJ	which goes do .7 kWh/m3-H2 e/kWhe and di	wn to 5.1 kWh, 2 by 2030 and 4 ividing by 120.1	/m3 (56.7 kWh I.4 kWh/m3-H2 1 MJ-H2-LHV/k	n/kg) in 2030 and 2 by 2050. g-H2.	d 5 kWh/m3 (5	5.6 kWh/kg) in	2050.
MATERIAL FLOWS (OPTIONAL)			•								
Material flows	Material	Unit	Current			2030			2050		
	Hydrogen	kg		-1.00			-1.00			-1.00	
	,		-1.00	-	-1.00	-1.00	-	-1.00	-1.00	-	-1.00
	Water	kg		14.50			14.50			14.50	
			14.50	-	14.50	14.50	-	14.50	14.50	-	14.50
Material flows explanation	According to Hydrogenics (2016), an	ound 1.3 liter c	of water per Nn	n3 hydrogen is	required (14.5	kg-water/kg-H	2)				
EMISSIONS (Non-fuel/energy-related en	nissions or emissions reductions (e.	g. CCS)	-				2020			2050	
	Substance	Unit		Current		2030			2050		
Emissions			A dia	-	1 Annu	0.4im	-	D. A our	1 dia	-	A daw
			IVIIII	_	IVIUX	IVIIII	-	IVIUX	IVIIII	-	IVIUX
			Min	-	May	Min	-	Max	Min	-	Max
			171111	_	IVIUX	IVIIII	-	IVIUX	IVIIII	-	IVIUX
			Min	-	May	Min	-	Max	Min	-	Max
			IVIIII		IVIUX	IVIIII		IVIUX	IVIIII	_	IVIUX
			Min	_	Max	Min	_	Max	Min	_	Max
Emissions explanation					IVIGA	141111		IVIGA			Max
REFERENCES AND SOURCES											
SA (2014). Techno-economic analysis of F	PEM electrolysis for hydrogen produc	tion.									
E4tech (2014). Development of water ele	ectrolysis in the European Union.										
Weeda (2018). Routekaart Waterstof TKI	Nieuw Gas.										
De Vita, A., Capros, P., Evangelopoulou, S	S., Kannavou, M., Siskos, P., Zazias, G.	, Boeve, S., Bor	ns, M., Winkel, I	R., Cihlar, J., De	Vos, L., Leemp	out, N., Mandat	tova, P. (2018).	. Sectoral integr	ation - long ter	m perspective.	
	ewable resources in the EU.										
DNV GL (2017). rapport verkenning water	rstofinfrastructuur.										
Detz, R. J., Reek, J. N., & van der Zwaan, I	B. C. (2018). The future of solar fuels:	when could th	ey become com	npetitive?							
NOW (2018). Industrialisierung der Wasserelektrolyse in Deutschland.											
ECN (2018). Internal industrial electrolyse	er data.										
Feroldi, D.; Basualdo, M.S. (2012). Descri	ption of PEM fuel cells system.										