

| STEAM WETHANE KEFOR                                                                                                                                                          | RMING (SMR) FOR HYD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROGEN F                                                                                                                          | RODUCT                                                                                                                                                      | ON WITI                                                                                                                                                        | H SYNGAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CARBON                                                                                                                                                            | CAPTUR                                                                                                                                     | E.                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|
| Date of factsheet                                                                                                                                                            | 27-7-2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
| Author                                                                                                                                                                       | Jacob Janssen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
| Sector                                                                                                                                                                       | Hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
| ETS / Non-ETS                                                                                                                                                                | ETS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
| Type of Technology                                                                                                                                                           | SMR-based hydrogen production wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | h syngas CO2 c                                                                                                                   | anture                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
| Description                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                             | oroducing hydr                                                                                                                                                 | ogen from natu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ral gas. This is a                                                                                                                                                | chieved in a pi                                                                                                                            | ocessing device                                                                                                                                                                                    | called a reform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ner which reac                                                                           | ts steam at                                                                                                      |  |
|                                                                                                                                                                              | Steam methane reforming (SMR) is a method that can be used for producing hydrogen from natural gas. This is achieved in a processing device called a reformer which reacts steam at high temperature with the gas. SMR uses the endothermic reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
|                                                                                                                                                                              | CH4 + H2O ⇌ CO + 3H2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
|                                                                                                                                                                              | The reaction is carried out at an acti<br>In this SMR plant, a COGEN plant is r<br>MDEA increases the natural gas cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | unning to expo                                                                                                                   | rt a relatively sr                                                                                                                                          | nall fraction of                                                                                                                                               | the energy invo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lved to the elec                                                                                                                                                  |                                                                                                                                            | this case, captu                                                                                                                                                                                   | ring CO2 from ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | he shifted syng                                                                          | gas using                                                                                                        |  |
| TRL level 2020                                                                                                                                                               | TRL 9<br>IEA (2017) reports 100.000 Nm3/h. a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | at 10,8 MJ/Nm3                                                                                                                   | s, this translates                                                                                                                                          | to a capacity o                                                                                                                                                | of precisely 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MW hydrogen                                                                                                                                                       | energy output.                                                                                                                             | Progress ratio i                                                                                                                                                                                   | s found in Thon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nas (2009)                                                                               |                                                                                                                  |  |
| TECHNICAL DIMENSIONS                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
|                                                                                                                                                                              | Functional Unit Value and Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
| Capacity                                                                                                                                                                     | MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300.0                                                                                    |                                                                                                                  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 300.00 -                                                                                                                                                    |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    | 300.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                          |                                                                                                                  |  |
| Potential                                                                                                                                                                    | MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NL                                                                                                                               |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   | unlimited                                                                                                                                  |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   | -                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          | -                                                                                                                |  |
| Market share                                                                                                                                                                 | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                                                                             | Min                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   | -                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Max                                                                                      |                                                                                                                  |  |
| Capacity utlization factor                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                | 1                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            | 1.0                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                                                                                  |  |
| Unit of Activity                                                                                                                                                             | PJ/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
| Technical lifetime (years)                                                                                                                                                   | - 1 / · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            | 25.0                                                                                                                                                                                               | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                                                                                                                  |  |
| Full-load running hours per year                                                                                                                                             | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            | 8,322                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
| Progress ratio                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            | 0.9                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                                                                                  |  |
| Hourly profile                                                                                                                                                               | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + 10 0 841/81                                                                                                                    |                                                                                                                                                             |                                                                                                                                                                | · f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N 40 A / househouse as a                                                                                                                                          |                                                                                                                                            | D                                                                                                                                                                                                  | a face of the Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (2000)                                                                                   |                                                                                                                  |  |
| Explanation                                                                                                                                                                  | IEA (2017) reports 100.000 Nm3/h. a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | it 10,8 MJ/Nm3                                                                                                                   | , this translates                                                                                                                                           | то а сарасіту с                                                                                                                                                | or precisely 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ivivv nyarogen (                                                                                                                                                  | energy output.                                                                                                                             | Progress ratio                                                                                                                                                                                     | s round in Thorr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ias (2009).                                                                              |                                                                                                                  |  |
| COSTS                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
| Year of Euro                                                                                                                                                                 | 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                            |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
|                                                                                                                                                                              | Euro per Functional Ur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nit                                                                                                                              |                                                                                                                                                             | Current                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                   | 2030                                                                                                                                       |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2050                                                                                     |                                                                                                                  |  |
| Investment costs per year                                                                                                                                                    | mln. € / MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                            | 0.88                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          | 0.88                                                                                                             |  |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 0.88                                                                                                                                                        | -                                                                                                                                                              | 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.88                                                                                                                                                              | -                                                                                                                                          | 1.16                                                                                                                                                                                               | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                        | 1.16                                                                                                             |  |
| Other costs per year                                                                                                                                                         | mln. € / MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                  |                                                                                                                                                             | _                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                   | _                                                                                                                                          | -                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          | -<br>I                                                                                                           |  |
|                                                                                                                                                                              | mln. € / MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                  | Min                                                                                                                                                         | -                                                                                                                                                              | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Min                                                                                                                                                               | -                                                                                                                                          | Max                                                                                                                                                                                                | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          | Max                                                                                                              |  |
| Fixed operational costs per year                                                                                                                                             | min. € / ivivv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                  |                                                                                                                                                             |                                                                                                                                                                | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                            | 0.03                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                                  |  |
| (excl. fuel costs)                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  | 0.03                                                                                                                                                        | -                                                                                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03                                                                                                                                                              | -                                                                                                                                          | 0.07                                                                                                                                                                                               | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                        |                                                                                                                  |  |
|                                                                                                                                                                              | mln. € / MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                  | 0.03                                                                                                                                                        | -                                                                                                                                                              | 0.07<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03                                                                                                                                                              | =                                                                                                                                          |                                                                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                        |                                                                                                                  |  |
| (exci. fuel costs)  Variable costs per year                                                                                                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  | 0.25                                                                                                                                                        | -                                                                                                                                                              | 0.25<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.25                                                                                                                                                              | -                                                                                                                                          | 0.07<br>0.25<br>0.25                                                                                                                                                                               | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                        | 0.25                                                                                                             |  |
| Variable costs per year  Costs explanation                                                                                                                                   | mln. € / MW  Data in NTNU (2016) is based on a d a higher (per kg H2 output) value for of the CAPEX costs. Conventional pla scale plant. Due to lack of data, ther costs include here raw water make-u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | investment co<br>ints (such as SN<br>e is an implicit a                                                                          | 0.25<br>nt, and the num<br>sts, which can a<br>IR) benefit from<br>assumption here                                                                          | bers here are<br>t least in part b<br>economy of s<br>the same sca                                                                                             | 0.25 0.25 scaled to represo e explained by cale, so you can ling factor can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25<br>ent the same si<br>the use of data<br>use a scale-up<br>e applied to thi                                                                                  | ze plant as in I<br>for a smaller s<br>factor of 0.8 (S<br>s plant, includi                                                                | 0.07 0.25 0.25 EA (2017). All core plant. In the innott et al., 20 ng its CCS comp                                                                                                                 | 0.25<br>osts excluding fu<br>se figures, the C<br>09) when estim-<br>onent. All value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>nel costs. Sinno<br>PEX costs amo<br>ating the cost on<br>s based on LH'            | 0.07<br>0.25<br>0.25<br>ot (2009) finds<br>ount to 3,6%<br>of a larger<br>V. Variable                            |  |
| Variable costs per year  Costs explanation                                                                                                                                   | Data in NTNU (2016) is based on a d<br>a higher (per kg H2 output) value for<br>of the CAPEX costs. Conventional pla<br>scale plant. Due to lack of data, ther<br>costs include here raw water make-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | investment co<br>ints (such as SN<br>e is an implicit a<br>up, catalysts an                                                      | 0.25<br>nt, and the num<br>sts, which can a<br>IR) benefit from<br>assumption here                                                                          | -<br>libers here are<br>t least in part t<br>economy of s<br>e the same sca<br>tt developmen                                                                   | 0.25 0.25 scaled to represo e explained by cale, so you can ling factor can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25<br>ent the same si<br>the use of data<br>use a scale-up<br>e applied to thi                                                                                  | -<br>ize plant as in I<br>for a smaller s<br>factor of 0.8 (S<br>s plant, includi<br>ar, and are fou                                       | 0.07 0.25 0.25 EA (2017). All core plant. In the innott et al., 20 ng its CCS comp                                                                                                                 | 0.25<br>osts excluding fu<br>se figures, the C<br>09) when estim-<br>onent. All value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | el costs. Sinno<br>IPEX costs amo<br>ating the cost<br>is based on LH<br>capture are ind | 0.07<br>0.25<br>0.25<br>ot (2009) finds<br>ount to 3,6%<br>of a larger<br>V. Variable                            |  |
| Variable costs per year                                                                                                                                                      | Data in NTNU (2016) is based on a d<br>a higher (per kg H2 output) value for<br>of the CAPEX costs. Conventional pla<br>scale plant. Due to lack of data, ther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | investment co<br>ints (such as SN<br>e is an implicit a                                                                          | 0.25<br>nt, and the num<br>sts, which can a<br>IR) benefit from<br>assumption here                                                                          | bers here are<br>t least in part b<br>economy of s<br>the same sca                                                                                             | 0.25 0.25 scaled to represo e explained by cale, so you can ling factor can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25<br>ent the same si<br>the use of data<br>use a scale-up<br>e applied to thi                                                                                  | ze plant as in I<br>for a smaller s<br>factor of 0.8 (S<br>s plant, includi                                                                | 0.07 0.25 0.25 EA (2017). All core plant. In the innott et al., 20 ng its CCS comp                                                                                                                 | 0.25<br>osts excluding fu<br>se figures, the C<br>09) when estim-<br>onent. All value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -<br>nel costs. Sinno<br>PEX costs amo<br>ating the cost on<br>s based on LH'            | 0.07<br>0.25<br>0.25<br>ot (2009) finds<br>ount to 3,6%<br>of a larger<br>V. Variable                            |  |
| Variable costs per year  Costs explanation                                                                                                                                   | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional ple scale plant. Due to lack of data, ther costs include here raw water make-time the costs include here raw water make-time. Energy carrier  Main output:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | investment co<br>ints (such as SN<br>e is an implicit a<br>up, catalysts an                                                      | 0.25<br>nt, and the num<br>sts, which can a<br>IR) benefit from<br>assumption here<br>d chemicals. Co:                                                      | -<br>libers here are<br>t least in part t<br>economy of s<br>e the same sca<br>tt developmen                                                                   | 0.25 0.25 scaled to represe explained by cale, so you can ling factor can b ts are taken related.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25<br>ent the same si<br>the use of data<br>use a scale-up<br>e applied to thi<br>stive to base ye                                                              | -<br>ize plant as in I<br>for a smaller s<br>factor of 0.8 (S<br>s plant, includi<br>ar, and are fou                                       | 0.07<br>0.25<br>0.25<br>EA (2017). All core plant. In the innott et al., 20 ong its CCS compind in Vita (2018                                                                                      | 0.25  Dosts excluding fu see figures, the C 09) when estim- nonent. All value 1). Cost for CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | el costs. Sinno<br>IPEX costs amo<br>ating the cost<br>is based on LH<br>capture are ind | 0.07<br>0.25<br>0.25<br>bt (2009) finds<br>bunt to 3,6%<br>of a larger<br>V. Variable<br>cluded.                 |  |
| Variable costs per year  Costs explanation                                                                                                                                   | Data in NTNU (2016) is based on a di<br>a higher (per kg H2 output) value for<br>of the CAPEX costs. Conventional pla<br>scale plant. Due to lack of data, ther<br>costs include here raw water make-u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | investment co<br>ints (such as SN<br>e is an implicit a<br>up, catalysts an                                                      | 0.25<br>nt, and the num<br>sts, which can a<br>IR) benefit from<br>assumption here                                                                          | -<br>libers here are<br>t least in part t<br>economy of s<br>e the same sca<br>tt developmen                                                                   | 0.25 0.25 scaled to represe explained by cale, so you can ling factor can b ts are taken relations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.25<br>ent the same si<br>the use of data<br>use a scale-up<br>e applied to thi                                                                                  | -<br>ize plant as in I<br>for a smaller s<br>factor of 0.8 (S<br>s plant, includi<br>ar, and are fou                                       | 0.07 0.25 0.25 EA (2017). All co                                                                                                                                                                   | 0.25<br>osts excluding fu<br>se figures, the C<br>09) when estim-<br>onent. All value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | el costs. Sinno<br>IPEX costs amo<br>ating the cost<br>is based on LH<br>capture are ind | 0.07<br>0.25<br>0.25<br>bt (2009) finds<br>bunt to 3,6%<br>of a larger<br>V. Variable<br>cluded.                 |  |
| Variable costs per year  Costs explanation                                                                                                                                   | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional pla scale plant. Due to lack of data, ther costs include here raw water make-tosts include here raw wa | investment co<br>ints (such as SN<br>e is an implicit a<br>up, catalysts an                                                      | 0.25<br>nt, and the num<br>sts, which can a<br>IR) benefit from<br>assumption here<br>d chemicals. Co:                                                      | -<br>libers here are<br>t least in part t<br>economy of s<br>e the same sca<br>tt developmen                                                                   | 0.25 0.25 scaled to represe explained by cale, so you can ling factor can b ts are taken related.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25<br>ent the same si<br>the use of data<br>use a scale-up<br>e applied to thi<br>stive to base ye                                                              | ze plant as in I<br>for a smaller s<br>factor of 0.8 (S<br>s plant, includi<br>ar, and are fou<br>2030                                     | 0.07<br>0.25<br>0.25<br>EA (2017). All core plant. In the innott et al., 20 ong its CCS compind in Vita (2018                                                                                      | 0.25  Dosts excluding fu see figures, the C 09) when estim- nonent. All value 1). Cost for CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - rel costs. Sinno rel costs amo ating the cost is based on LH capture are inc 2050      | 0.07 0.25 0.25 0.25 0t (2009) finds bunt to 3,6% of a larger V. Variable cluded.                                 |  |
| Variable costs per year  Costs explanation                                                                                                                                   | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional ple scale plant. Due to lack of data, ther costs include here raw water make-time the costs include here raw water make-time. Energy carrier  Main output:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | investment co<br>ints (such as SN<br>e is an implicit a<br>up, catalysts an                                                      | 0.25<br>nt, and the num<br>sts, which can a<br>IR) benefit from<br>assumption here<br>d chemicals. Co:                                                      | -<br>libers here are<br>t least in part t<br>economy of s<br>e the same sca<br>tt developmen                                                                   | 0.25 0.25 scaled to represe explained by cale, so you can ling factor can bts are taken related to the control of the control  | 0.25<br>ent the same si<br>the use of data<br>use a scale-up<br>e applied to thi<br>stive to base ye                                                              | ze plant as in I<br>for a smaller s<br>factor of 0.8 (S<br>s plant, includi<br>ar, and are fou<br>2030                                     | 0.07 0.25 0.25 EA (2017). All core plant. In the innott et al., 20 ong its CCS compnd in Vita (2018                                                                                                | 0.25  Dosts excluding fu see figures, the C 09) when estim- nonent. All value 1). Cost for CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - rel costs. Sinno rel costs amo ating the cost is based on LH capture are inc 2050      | 0.07 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25                                                                     |  |
| Variable costs per year  Costs explanation  ENERGY IN- AND OUTPUTS                                                                                                           | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional pla scale plant. Due to lack of data, ther costs include here raw water make-costs include here raw wa | investment co<br>ints (such as SNe<br>e is an implicit<br>up, catalysts an<br>Unit                                               | 0.25 nt, and the num sts, which can a file benefit from assumption here d chemicals. Co:                                                                    | - ibers here are t least in part t economy of s et he same sca st developmen  Current                                                                          | 0.25 ccaled to represse explained by calcing factor can be ts are taken related to the control of the control o | 0.25 sent the same si the use of data use a scale-up e applied to thistive to base ye                                                                             | ze plant as in I<br>for a smaller s<br>factor of 0.8 (S<br>s plant, includi<br>ar, and are fou<br>2030                                     | 0.07 0.25 0.25 EA (2017). All core plant. In the innott et al., 20 ong its CCS comp in Vita (2018 -1.00 -1.00 -0.03                                                                                | 0.25 posts excluding fuse figures, the C 09) when estim- nonent. All value 1). Cost for CO2 -1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | el costs. Sinno DEX costs amo and the cost on LH capture are inc 2050                    | 0.07 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25                                                                     |  |
| Variable costs per year  Costs explanation  ENERGY IN- AND OUTPUTS                                                                                                           | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional pla scale plant. Due to lack of data, ther costs include here raw water make-tosts include here raw wa | investment co<br>ints (such as SN<br>e is an implicit a<br>up, catalysts an                                                      | 0.25 nt, and the num sts, which can a file benefit from assumption here d chemicals. Co:                                                                    | - ibers here are t least in part t economy of s et he same sca st developmen  Current                                                                          | 0.25 0.25 scaled to represe explained by cale, so you can ling factor can b ts are taken related to the cale.  -1.00 -1.00 -0.03 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.25 sent the same si the use of data use a scale-up e applied to thistive to base ye                                                                             | ze plant as in I<br>for a smaller s<br>factor of 0.8 (S<br>s plant, includi<br>ar, and are fou<br>2030                                     | 0.07 0.25 0.25 EA (2017). All core plant. In the innott et al., 20 ong its CCS compand in Vita (2018 -1.00 -1.00 -0.03 0.00                                                                        | 0.25 posts excluding fuse figures, the C 09) when estim- nonent. All value 1). Cost for CO2 -1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | el costs. Sinno DEX costs amo and the cost on LH capture are inc 2050                    | 0.07 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25                                                                     |  |
| Variable costs per year  Costs explanation  ENERGY IN- AND OUTPUTS                                                                                                           | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional pla scale plant. Due to lack of data, ther costs include here raw water make-costs include here raw wa | investment co<br>ints (such as SNe<br>e is an implicit<br>up, catalysts an<br>Unit                                               | 0.25 nt, and the num sts, which can a file benefit from assumption here d chemicals. Co: -1.00 -0.03                                                        | bers here are<br>t least in part t<br>economy of s<br>the same sca<br>st developmen                                                                            | 0.25 ccaled to represse explained by cale, so you can ling factor can b ts are taken related to the control of  | 0.25 sent the same si the use of data use a scale-up e applied to thistive to base ye.                                                                            | ze plant as in I<br>for a smaller s<br>factor of 0.8 (S<br>s plant, includi<br>ar, and are fou<br>2030                                     | 0.07 0.25 0.25 0.25 EA (2017). All cozze plant. In the innot tet al., 20 ng its CCS comp nd in Vita (2018 -1.00 -1.00 -0.03 0.00 1.47                                                              | 0.25 posts excluding fuse figures, the Cooperation of the Cooperation  | rel costs. Sinno PPEX costs amo ating the cost s based on LH capture are inc             | 0.07 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25                                                                     |  |
| Variable costs per year  Costs explanation  ENERGY IN- AND OUTPUTS                                                                                                           | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional pla scale plant. Due to lack of data, ther costs include here raw water make-tosts include here raw wa | investment co<br>ints (such as SM,<br>e is an implicit a<br>pp, catalysts an<br>Unit  PJ  PJ  PJ                                 | 0.25 nt, and the num sts, which can a RR) benefit from assumption herd d chemicals. Co:  -1.00  -0.03  1.47                                                 | - bers here are t least in part t least in the same sca tt developmen  Current | 0.25 scaled to represse explained by cale, so you can ling factor can b ts are taken related to the cale of the ca | 0.25 eent the same si the use of data use a scale-up ee applied to thi attive to base yee -1.00 -0.03                                                             | ze plant as in I<br>for a smaller s<br>factor of 0.8 (S<br>s plant, includi<br>ar, and are fou<br>2030                                     | 0.07 0.25 0.25 0.25 EA (2017). All core plant. In the innott et al., 20 ng its CCS comp nd in Vita (2018 -1.00 -1.00 -0.03 0.00 1.47 1.47 - Max                                                    | 0.25 osts excluding fuse figures, the Copy of the Copy | -tiel costs. Sinnocosts ama taling the cost s abard on LH capture are ind                | 0.07 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25                                                                     |  |
| Variable costs per year  Costs explanation  ENERGY IN- AND OUTPUTS  Energy carriers (per unit of main output)                                                                | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional pla scale plant. Due to lack of data, ther costs include here raw water make-costs include here raw wa | investment co ints (such as SM, e is an implicit i inp, catalysts an  Unit  PJ  PJ  PJ  PJ  P i h give 10,8*10' accordingly. The | 0.25 nt, and the num sts, which can a file benefit from assumption here d chemicals. Co:  -1.00  -0.03  1.47  Min  5*24*365*0,99 e NTNU study r             | current  Current                                                                                                                                               | 0.25 ccaled to represse explained by cale, so you can ling factor can be ts are taken related to the control of | 0.25 sent the same si the use of data use a scale-up e applied to thi ative to base ye.  -1.00  -0.03  1.47  Min  or is to account of 0,82, but ba                | ze plant as in I for a smaller s factor of 0.8 (S s plant, includi ar, and are fou  2030  for active runr sed on their ov                  | 0.07 0.25 0.25 EA (2017). All core plant. In the innott et al., 20 ong its CCS compand in Vita (2018 -1.00 -1.00 -0.03 0.00 1.47 1.47                                                              | 0.25 posts excluding fuse figures, the Coops when estimation onent. All values). Cost for CO2 of the Coops with | rel costs. Sinno PEX costs ama sting the cost . s based on LH capture are inc  2050      | 0.07 0.25 0.25 t (2009) finds ount to 3,6% of a larger V. Variable cluded.  -1.00 -0.03 0.00 1.47 - Max from IEA |  |
| Variable costs per year  Costs explanation  ENERGY IN- AND OUTPUTS  Energy carriers (per unit of main output)  Energy in- and Outputs explanation                            | Data in NTNU (2016) is based on a d a higher (per kg H2 output) value for of the CAPEX costs. Conventional pla scale plant. Due to lack of data, ther costs include here raw water make-to  Energy carrier  Main output: Hydrogen  Electricity  Natural gas resource (gas fields)  Production of hydrogen; 10^5 Nm3/ (2017) and NTNU (2016) and scaled efficiency of 0,96. A plant with an av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | investment co ints (such as SM, e is an implicit i inp, catalysts an  Unit  PJ  PJ  PJ  PJ  P i h give 10,8*10' accordingly. The | 0.25 nt, and the num sts, which can a file benefit from assumption here d chemicals. Co:  -1.00  -0.03  1.47  Min  5*24*365*0,99 e NTNU study r             | current  Current                                                                                                                                               | 0.25 ccaled to represse explained by cale, so you can ling factor can be ts are taken related to the control of | 0.25 sent the same si the use of data use a scale-up e applied to thi ative to base ye.  -1.00  -0.03  1.47  Min  or is to account of 0,82, but ba                | ze plant as in I for a smaller s factor of 0.8 (S s plant, includi ar, and are fou  2030  for active runr sed on their ov                  | 0.07 0.25 0.25 EA (2017). All core plant. In the innott et al., 20 ong its CCS compand in Vita (2018 -1.00 -1.00 -0.03 0.00 1.47 1.47                                                              | 0.25 posts excluding fuse figures, the Coops when estimation onent. All values). Cost for CO2 of the Coops with | rel costs. Sinno PEX costs ama sting the cost . s based on LH capture are inc  2050      | 0.07 0.25 0.25 t (2009) finds ount to 3,6% of a larger V. Variable cluded.  -1.00 -0.03 0.00 1.47 - Max from IEA |  |
| Variable costs per year  Costs explanation  ENERGY IN- AND OUTPUTS  Energy carriers (per unit of main output)                                                                | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional ple scale plant. Due to lack of data, ther costs include here raw water make-tosts include here gas fields.  Energy carrier  Moin output: Hydrogen  Electricity  Natural gas resource (gas fields)  Production of hydrogen; 10^5 Nm3/(2017) and NTNU (2016) and scaled efficiency of 0,96. A plant with an aw utilization rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | units (such as SM.  Unit  PJ  PJ  PJ  PJ  A give 10,8*10'  accordingly. The erage power of                                       | 0.25 nt, and the num sts, which can a file benefit from assumption here d chemicals. Co:  -1.00  -0.03  1.47  Min  5*24*365*0,99 e NTNU study r             | bers here are t least in part t economy of s the same sca t developmen  Current                                                                                | 0.25 ccaled to represse explained by cale, so you can ling factor can be ts are taken related to the control of | 0.25 sent the same si the use of data use a scale-up e applied to thi ative to base ye.  -1.00  -0.03  1.47  Min  or is to account of 0,82, but ba                | ze plant as in I for a smaller s factor of 0.8 (S s plant, includi ar, and are fou  2030  for active runr sed on their ov led by 8,99 to j | 0.07 0.25 0.25 EA (2017). All core plant. In the innott et al., 20 ong its CCS compand in Vita (2018 -1.00 -1.00 -0.03 0.00 1.47 1.47                                                              | 0.25 posts excluding fuse figures, the Coops when estimation onent. All values). Cost for CO2 of the Coops with | rel costs. Sinno PEX costs ama ating the cost s s based on LH capture are inc  2050      | 0.07 0.25 0.25 t (2009) finds ount to 3,6% of a larger V. Variable cluded.  -1.00 -0.03 0.00 1.47 - Max from IEA |  |
| Costs explanation  ENERGY IN- AND OUTPUTS  Energy carriers (per unit of main output)  Energy in- and Outputs explanation                                                     | Data in NTNU (2016) is based on a d a higher (per kg H2 output) value for of the CAPEX costs. Conventional pla scale plant. Due to lack of data, ther costs include here raw water make-to  Energy carrier  Main output: Hydrogen  Electricity  Natural gas resource (gas fields)  Production of hydrogen; 10^5 Nm3/ (2017) and NTNU (2016) and scaled efficiency of 0,96. A plant with an av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | investment co ints (such as SM, e is an implicit i inp, catalysts an  Unit  PJ  PJ  PJ  PJ  P i h give 10,8*10' accordingly. The | 0.25 nt, and the num sts, which can a file benefit from assumption here d chemicals. Co:  -1.00  -0.03  1.47  Min  5*24*365*0,99 e NTNU study r             | current  Current                                                                                                                                               | 0.25 ccaled to represse explained by cale, so you can ling factor can b ts are taken related and the control of | 0.25 sent the same si the use of data use a scale-up e applied to thi ative to base ye.  -1.00  -0.03  1.47  Min  or is to account of 0,82, but ba                | ze plant as in I for a smaller s factor of 0.8 (S s plant, includi ar, and are fou  2030  for active runr sed on their ov                  | 0.07 0.25 0.25 EA (2017). All coze plant. In the innott et al., 20 ng its CCS compand in Vita (2018 -1.00 -1.00 -0.03 0.00 1.47 1.47                                                               | 0.25 posts excluding fuse figures, the Coops when estimation onent. All values). Cost for CO2 of the Coops with | rel costs. Sinno PEX costs ama sting the cost . s based on LH capture are inc  2050      | 0.07 0.25 0.25 t (2009) finds ount to 3,6% of a larger V. Variable cluded.  -1.00 -0.03 0.00 1.47 - Max from IEA |  |
| Variable costs per year  Costs explanation  ENERGY IN- AND OUTPUTS  Energy carriers (per unit of main output)  Energy in- and Outputs explanation  MATERIAL FLOWS (OPTIONAL) | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional ple scale plant. Due to lack of data, ther costs include here raw water make-tosts include here gas fields.  Energy carrier  Moin output: Hydrogen  Electricity  Natural gas resource (gas fields)  Production of hydrogen; 10^5 Nm3/(2017) and NTNU (2016) and scaled efficiency of 0,96. A plant with an aw utilization rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | units (such as SM.  Unit  PJ  PJ  PJ  PJ  A give 10,8*10'  accordingly. The erage power of                                       | 0.25 nt, and the nur sts, which can a MR) benefit from assumption here d chemicals. Co:  -1.00  -0.03  1.47  Min  5*24*365*0,95 ee NTNU study r 300*0,95 MW | bers here are t least in part t economy of s the same sca t developmen  Current                                                                                | 0.25 ccaled to represse explained by cale, so you can ling factor can be ts are taken related to the control of | 0.25 sent the same si the use of data use a scale-up e applied to thi ative to base ye.  -1.00  -0.03  1.47  Min  or is to account of 0,82, but ba umbers are sca | ze plant as in I for a smaller s factor of 0.8 (S s plant, includi ar, and are fou 2030 for active runr sed on their ov led by 8,99 to p   | 0.07 0.25 0.25 0.25 EA (2017). All cozze plant. In the innort et al., 20 ng its CCS comp nd in Vita (2018 -1.00 -1.00 -0.03 0.00 1.47 1.47 - Max ing Mours per y vn reported valigive a per PJ res | 0.25 osts excluding fuse figures, the Coop on when estimmonent. All value of the Coop of t | rel costs. Sinno PEX costs ama ating the cost is absed on LH capture are inc  2050       | 0.07 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25                                                                     |  |
| Costs explanation  ENERGY IN- AND OUTPUTS  Energy carriers (per unit of main output)  Energy in- and Outputs explanation                                                     | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional ple scale plant. Due to lack of data, ther costs include here raw water make-tosts include here gas fields.  Energy carrier  Moin output: Hydrogen  Electricity  Natural gas resource (gas fields)  Production of hydrogen; 10^5 Nm3/(2017) and NTNU (2016) and scaled efficiency of 0,96. A plant with an aw utilization rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | units (such as SM.  Unit  PJ  PJ  PJ  PJ  A give 10,8*10'  accordingly. The erage power of                                       | 0.25 nt, and the num sts, which can a file benefit from assumption here d chemicals. Co:  -1.00  -0.03  1.47  Min  5*24*365*0,99 e NTNU study r             | bers here are t least in part t economy of s the same sca t developmen  Current                                                                                | 0.25 ccaled to represse explained by cale, so you can ling factor can b ts are taken related and the control of | 0.25 sent the same si the use of data use a scale-up e applied to thi ative to base ye.  -1.00  -0.03  1.47  Min  or is to account of 0,82, but ba                | ze plant as in I for a smaller s factor of 0.8 (S s plant, includi ar, and are fou  2030  for active runr sed on their ov led by 8,99 to j | 0.07 0.25 0.25 EA (2017). All coze plant. In the innott et al., 20 ng its CCS compand in Vita (2018 -1.00 -1.00 -0.03 0.00 1.47 1.47                                                               | 0.25 posts excluding fuse figures, the Coops when estimation onent. All values). Cost for CO2 of the Coops with | rel costs. Sinno PEX costs ama ating the cost s s based on LH capture are inc  2050      | 0.07 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25                                                                     |  |
| Costs explanation  ENERGY IN- AND OUTPUTS  Energy carriers (per unit of main output)  Energy in- and Outputs explanation  MATERIAL FLOWS (OPTIONAL)                          | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional ple scale plant. Due to lack of data, ther costs include here raw water make-tosts include here gas fields.  Energy carrier  Moin output: Hydrogen  Electricity  Natural gas resource (gas fields)  Production of hydrogen; 10^5 Nm3/(2017) and NTNU (2016) and scaled efficiency of 0,96. A plant with an aw utilization rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | units (such as SM.  Unit  PJ  PJ  PJ  PJ  A give 10,8*10'  accordingly. The erage power of                                       | 0.25 nt, and the nur sts, which can a MR) benefit from assumption here d chemicals. Co:  -1.00  -0.03  1.47  Min  5*24*365*0,95 ee NTNU study r 300*0,95 MW | bers here are t least in part t economy of s the same sca t developmen  Current                                                                                | 0.25 ccaled to represse explained by cale, so you can ling factor can be ts are taken related to the control of | 0.25 sent the same si the use of data use a scale-up e applied to thi ative to base ye.  -1.00  -0.03  1.47  Min  or is to account of 0,82, but ba umbers are sca | ze plant as in I for a smaller s factor of 0.8 (S s plant, includi ar, and are fou 2030 for active runr sed on their ov led by 8,99 to p   | 0.07 0.25 0.25 0.25 EA (2017). All cozze plant. In the innort et al., 20 ng its CCS comp nd in Vita (2018 -1.00 -1.00 -0.03 0.00 1.47 1.47 - Max ing Mours per y vn reported valigive a per PJ res | 0.25 osts excluding fuse figures, the Coop on when estimmonent. All value of the Coop of t | rel costs. Sinno PEX costs ama ating the cost is absed on LH capture are inc  2050       | 0.07 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25                                                                     |  |
| Variable costs per year  Costs explanation  ENERGY IN- AND OUTPUTS  Energy carriers (per unit of main output)  Energy in- and Outputs explanation  MATERIAL FLOWS (OPTIONAL) | Data in NTNU (2016) is based on a di a higher (per kg H2 output) value for of the CAPEX costs. Conventional ple scale plant. Due to lack of data, ther costs include here raw water make-tosts include here gas fields.  Energy carrier  Moin output: Hydrogen  Electricity  Natural gas resource (gas fields)  Production of hydrogen; 10^5 Nm3/(2017) and NTNU (2016) and scaled efficiency of 0,96. A plant with an aw utilization rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | units (such as SM.  Unit  PJ  PJ  PJ  PJ  A give 10,8*10'  accordingly. The erage power of                                       | 0.25 nt, and the nur sts, which can a MR) benefit from assumption here d chemicals. Co:  -1.00  -0.03  1.47  Min  5*24*365*0,95 ee NTNU study r 300*0,95 MW | bers here are t least in part t economy of s the same sca t developmen  Current                                                                                | 0.25 ccaled to represse explained by cale, so you can ling factor can be ts are taken related to the control of | 0.25 sent the same si the use of data use a scale-up e applied to thi ative to base ye.  -1.00  -0.03  1.47  Min  or is to account of 0,82, but ba umbers are sca | ze plant as in I for a smaller s factor of 0.8 (S s plant, includi ar, and are fou 2030 for active runr sed on their ov led by 8,99 to p   | 0.07 0.25 0.25 0.25 EA (2017). All cozze plant. In the innort et al., 20 ng its CCS comp nd in Vita (2018 -1.00 -1.00 -0.03 0.00 1.47 1.47 - Max ing Mours per y vn reported valigive a per PJ res | 0.25 osts excluding fuse figures, the Coop on when estimmonent. All value of the Coop of t | rel costs. Sinno PEX costs ama ating the cost is absed on LH capture are inc  2050       | 0.07 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25                                                                     |  |

|           | Substance | Unit |       | Current |       | 2030  |   |       | 2050  |   |       |
|-----------|-----------|------|-------|---------|-------|-------|---|-------|-------|---|-------|
|           | CO2       | Mton |       |         | -0.04 | -0.04 |   |       | -0.04 |   |       |
|           |           |      | -0.04 | -       | -0.04 | -0.04 | - | -0.04 | -0.04 | - | -0.04 |
|           |           |      |       |         |       |       |   | -     |       |   | -     |
| Emissions |           |      | Min   | -       | Max   | Min   | - | Max   | Min   | - | Max   |
|           |           |      |       |         | -     |       |   | -     |       |   | -     |
|           |           |      | Min   | -       | Max   | Min   | - | Max   | Min   | - | Max   |
|           |           |      |       |         |       |       |   | -     |       |   | -     |
|           |           |      | Min   | -       | Max   | Min   | - | Max   | Min   | - | Max   |

correct for utilization percentage.

## OTHER

| ſ     |  |     | Current |     |     | 2030 |     |     | 2050 |     |
|-------|--|-----|---------|-----|-----|------|-----|-----|------|-----|
| Other |  |     |         | -   |     |      | -   |     |      | -   |
|       |  | Min | -       | Max | Min | -    | Max | Min | -    | Max |

## REFERENCES AND SOURCES

IEA (2017). Techno-Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS. Accessed through https://ieaghg.org/exco\_docs/2017-02.pdf

Jakobsen, D. & Åtland, V. (2016). Concepts for large scale hydrogen production. Thesis, NTNU.

Voldsund, M., Jordal, K., & Anantharaman, R. (2016). Hydrogen production with CO2 capture. International Journal of Hydrogen Energy, 41(9), 4969-4992.

Sinnott, R.K. & Towler, G. (2009). Chemical engineering design: SI Edition. Elsevier.

Ramsden, T., Steward, D. & Zuboy, J. (2009). Analyzing the Levelized cost of Centralized and Distributed Hydrogen Production Using the H2A production Model, Version 2, National Renewable Energy Laboratory, Virginia, 2009

IEA (2015). Technology Roadmap - Hydrogen and Fuel Cells, OECD/IEA.

Whitesides, R.W. (2005). Process equipment cost estimating by ratio and proportion. Course notes, PDH Course G 127.

Vita et al (2018). Sectoral integration - long-term perspective in the EU Energy System. ASSET

Thomas (2009). Low-Cost Hydrogen Distributed Production System Development