TECHNOLOGY FACTSHEET

HIGH TEMPERATURE AIR SOURCE HEAT PUMP (SUPPLY TEMPERATURE 65°C TO 80°C)

Author Sector											
Sector	Robin Niessink										
	Households										
1											
ETS / Non-ETS	Non-ETS										
Type of Technology	Emission reduction										
Description	This factsheet describes an air source combination with traditional wet radi								anging from 65	°C to 80 °C tha	t works in
	There are different supply temperatur source heat pumps typically supply he usually designed for an inlet temperatur these heat pumps reach a temperatur water. No (significant) adjustments to	eat at a tempe ture of 75°C a re of 65 °C up	rature of up to nd a return tem to 80 °C (Carbo	55°C (Khoa Xua perature of 65°C n Trust and Raw	n Le et al. (201 C (Khoa Xuan L vlings Support	19). This howeve e et al. (2019). H Services, 2016).	er does not wo High temperat	rk efficiently wit ure heat pumps	th traditional w can achieve the	et radiators in h ese temperatur	nomes that are es; typically
	The working principle of a heat pump evaporator where a refrigerant flows: liquid (within the condenser) to releas dwelling. The transport medium for h The efficiency of a heat pump is expre between supply temperature and hea instance, in winter, there is a larger te the heat pump has to be stopped. For	through that a se heat to a he eat in the dwe essed as the co at source, in te emperature lift	absorbs heat. Af eat exchanger. A elling is water (e. pefficient of perf echnical terms th c, resulting in a lo	ter evaporation n expander mail g. wet radiators formance (COP) e temperature ower COP. At a c	, an electric dr kes the refriger or underfloor the ratio betw difference betw certain point th	iven compresso rant ready for h heating). ween heat outpu ween heat sourch he temperature	or increases the eat absorption ut and electric ce and heat sin difference wil	e pressure, after h. Heat released ity input. The CC hk. The higher th l be too great fo	which the refri (within the con DP depends on the temperature r the heat pum	gerant condens idenser) is trans the temperatur lift, the lower t p to operate (ef	es back to a ferred to the e difference he COP. For fficiently) and
TRL level 2020	TRL 9 The European Heat Pump Association	report (2018)	indicates that '	ormal' heat nu	mps provide t	emperatures un	to 80°C and d		ources from rer	newable and wa	
	with temperatures up to 40°C. These a				ps provide t	compenatures up		an use energy s	carces nom rer		Sice Sources
TECHNICAL DIMENSIONS	Functional Unit						/alue and Ran	ge			
Capacity	kWth						11				
				6			-			16	
				Current			2030			2050	
Potential				-			-			-	
			Min	-	Max	Min	-	Max	Min	-	Max
Market share		%	Min	-	Max	Min	-	Max	Min	-	Max
Capacity utlization factor								1			
Full-load running hours per year								1,100			
Unit of Activity	GJth/year									45	
Technical lifetime (years)	15 to 20									45	
Progress ratio	15 10 20										
	Vee										
Hourly profile Explanation	Yes The typical thermal capacity of a high										
	(note that dwellings frequently use a g	gas bolici ioi i		and - a hybrid b	esting system	1					peratures
	The future market share of residential energy policies. It is uncertain whethe possibilities. Annual full load hours of a heat pump demand and a heat pump with a capa The lifetime of a high temperature he- services, 2016).	er home owner o depend on th acity of 11kWt	is uncertain. It d rs would opt mo ne heat demand h, then there ar	re often for low (profile) of a dy e around 1100 f	nical and syste or high tempo velling and the full load hours.	em innovations (erature heating e thermal capaci . These are full k	systems in the ity of the heat oad hours are	future; this dep pump. If we ass for space heatin	pends for instar sume a dwelling ng and hot tapw	nce on house re with 45 GJ as fi vater combined	n through novation inal heat
(0515	energy policies. It is uncertain whethe possibilities. Annual full load hours of a heat pump demand and a heat pump with a capa The lifetime of a high temperature he	er home owner o depend on th acity of 11kWt	is uncertain. It d rs would opt mo ne heat demand h, then there ar	epends on tech re often for low (profile) of a dv e around 1100 f	nical and syste or high tempo velling and the full load hours.	em innovations (erature heating e thermal capaci . These are full k	systems in the ity of the heat oad hours are	future; this dep pump. If we ass for space heatin	pends for instar sume a dwelling ng and hot tapw	nce on house re with 45 GJ as fi vater combined	n through novation inal heat
COSTS Year of Euro	energy policies. It is uncertain whethe possibilities. Annual full load hours of a heat pump demand and a heat pump with a capa The lifetime of a high temperature he Services, 2016).	er home owner o depend on th acity of 11kWt	is uncertain. It d rs would opt mo ne heat demand h, then there ar	epends on tech re often for low (profile) of a dv e around 1100 f	nical and syste or high tempo velling and the full load hours.	em innovations (erature heating e thermal capaci . These are full k	systems in the ity of the heat oad hours are	future; this dep pump. If we ass for space heatin	pends for instar sume a dwelling ng and hot tapw	nce on house re with 45 GJ as fi vater combined	n through novation inal heat
COSTS Year of Euro	energy policies. It is uncertain whethe possibilities. Annual full load hours of a heat pump demand and a heat pump with a capa The lifetime of a high temperature he Services, 2016). 2015	er home owner o depend on th acity of 11kWt at pump is exp	is uncertain. It d rs would opt mo ne heat demand h, then there ar	epends on tech re often for low (profile) of a du e around 1100 f ilar to that of a	nical and syste or high tempo velling and the full load hours.	em innovations (erature heating e thermal capaci . These are full k	systems in the ity of the heat oad hours are t pump which	future; this dep pump. If we ass for space heatin	pends for instar sume a dwelling ng and hot tapw	nce on house re with 45 GJ as fi vater combined Trust and Rawl	n through novation inal heat
Year of Euro	energy policies. It is uncertain whethe possibilities. Annual full load hours of a heat pump demand and a heat pump with a capa The lifetime of a high temperature he Services, 2016). 2015 Euro per Functional Unit	er home owner o depend on th acity of 11kWt at pump is exp	is uncertain. It d rs would opt mo ne heat demand h, then there ar	epends on tech re often for low (profile) of a dv e around 1100 f ilar to that of a Current	nical and syste or high tempo velling and the full load hours.	em innovations (erature heating e thermal capaci . These are full k	systems in the ity of the heat oad hours are t pump which i 2030	future; this dep pump. If we ass for space heatin	pends for instar sume a dwelling ng and hot tapw	nce on house re with 45 GJ as fi vater combined Trust and Rawl 2050	n through novation inal heat
	energy policies. It is uncertain whethe possibilities. Annual full load hours of a heat pump demand and a heat pump with a capa The lifetime of a high temperature he Services, 2016). 2015	er home owner o depend on th acity of 11kWt at pump is exp	is uncertain. It d rs would opt mo ne heat demand h, then there ar pected to be sim	epends on tech re often for low (profile) of a dv e around 1100 f ilar to that of a Current 1,052	nical and syste or high tempo welling and the 'ull load hours. regular low te	erature heating erature heating e thermal capaci These are full l mperature heat	systems in the ity of the heat oad hours are t pump which i 2030 842	e future; this dep pump. If we ass for space heatin s about 15 to 20	pends for instar nume a dwelling ng and hot tapw D years (Carbon	with 45 GJ as fi vater combined Trust and Rawl 2050 736	n through novation inal heat ings Support
Year of Euro	energy policies. It is uncertain whethe possibilities. Annual full load hours of a heat pump demand and a heat pump with a capa The lifetime of a high temperature he Services, 2016). 2015 Euro per Functional Unit	er home owner o depend on th acity of 11kWt at pump is exp	is uncertain. It d rs would opt mo ne heat demand h, then there ar pected to be sim	epends on tech re often for low (profile) of a dd e around 1100 f illar to that of a <u>Current</u> 1,052 -	nical and syste or high tempo velling and the 'ull load hours. regular low te 1,473	em innovations (erature heating e thermal capaci These are full l mperature heat	systems in the ity of the heat oad hours are t pump which i 2030 842 - -	ture; this dep pump. If we ass for space heatin s about 15 to 20 1,178	pends for instar nume a dwelling ng and hot tapw D years (Carbon	with 45 GJ as fi aver combined. Trust and Rawl 2050 736 -	n through novation inal heat ings Support 1,031
Year of Euro Investment costs Other costs per year Fixed operational costs per year	energy policies. It is uncertain whethe possibilities. Annual full load hours of a heat pump demand and a heat pump with a capa The lifetime of a high temperature hes Services, 2016). 2015 2015 Euro per Functional Unit € / kWth	er home owner o depend on th acity of 11kWt at pump is exp	e heat demand h, then there ar pected to be sim	epends on tech re often for low (profile) of a dv e around 1100 f illar to that of a 1.052 - - 21	nical and syste or high tempo velling and the full load hours: regular low te 1,473 Max	em innovations i erature heating e thermal capaci These are full li mperature heat 505 <u>Min</u>	systems in the ity of the heat oad hours are t pump which i t pump which i e 2030 842 - - - - - - - - - - - - - - - - - - 17	e future; this dep pump. If we ass for space heatin s about 15 to 20 1,178 Max	ume a dwelling gg and hot tapw D years (Carbon 442 <u>Min</u>	xe on house re with 45 GJ as fi ater combined Trust and Rawl 2050 736 - - - - - 15	n through novation inal heat ings Support 1,031 <i>Max</i>
Year of Euro Investment costs Other costs per year Fixed operational costs per year (excl. fuel costs)	energy policies. It is uncertain whethe possibilities. Annual full load hours of a heat pump demand and a heat pump with a capa The lifetime of a high temperature her Services, 2016). 2015 Euro per Functional Unit € / kWth € / kWth	er home owner o depend on th acity of 11kWt at pump is exp	is uncertain. It d rs would opt mo ne heat demand h, then there ar pected to be sim	epends on tech re often for low (profile) of a dv e around 1100 f illar to that of a 1,052 - - - -	nical and syste or high tempo velling and the 'ull load hours. regular low te 1,473	em innovations (erature heating e thermal capaci These are full l mperature heat	ity of the heat oad hours are t pump which i 2030 842 - - -	ture; this dep pump. If we ass for space heatin s about 15 to 20 1,178	pends for instar nume a dwelling ng and hot tapw D years (Carbon	with 45 GJ as fi arter combined Trust and Rawl 2050 736 - - - - -	n through novation inal heat ings Support 1,031
Year of Euro Investment costs Other costs per year Fixed operational costs per year	energy policies. It is uncertain whethe possibilities. Annual full load hours of a heat pump demand and a heat pump with a capa The lifetime of a high temperature hes Services, 2016). 2015 2015 Euro per Functional Unit € / kWth € / kWth	r home owner b depend on th scity of 11kWt at pump is exp t	e heat demand h, then there ar bected to be sime 631 Min 11 Min	epends on tech re often for low (profile) of a dv a around 1100 i ilar to that of a <u>Current</u> 1.052 - - - - 21 - - - - - -	nical and syste or high tempore veiling and the uill load hours. regular low te 1,473 Max 105 Max	m innovations (erature heating thermal capaci These are full i mperature heat 505 <u>Min</u> 8 <u>8</u> <u>Min</u>	systems in the ity of the heat oad hours are t pump which i 2030 842 - - - - - - - - - - - - - - - - - - -	e future; this dep pump. If we ass for space heatin s about 15 to 20 1,178 Max 84 Max	ume a dwelling ng and hot tapw J years (Carbon 442 Min 7 Min	ve on house re with 45 GJ as fi vater combined Trust and Rawl 2050 736 - - - - - - - - - - - - - - - - - - -	n through novation inal heat ings Support 1,031 Max 74 Max

	Projections: Based on costs reduction factors for (compared to 2013). For 2050, a cos percentage mentioned in each case	st decrease of 3	0-40% is projec	ted (IEA ETSAP	, 2013). Becaus	e the costs reduc	tion projection	n is compared t	o 2013 we tal	ke the minimur	m cost reduction	
	For comparison: EHPA (2019) report approximately 22% by 2024 and app										tion of	
ENERGY IN- AND OUTPUTS												
	Energy carrier	Unit		Current			2030			2050		
	Main output: Heat	GJ	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	
F	Ambient heat	GJ	0.02	0.52	0.52	0.25	0.63	0.63	0.20	0.65	0.05	
Energy carriers (per unit of main output)	Electricity	GJ	0.02	0.48	0.52	0.25	0.37	0.63	0.30	0.35	0.65	
	Electricity	G	0.48	-	0.98	0.37	-	0.75	0.35	-	0.70	
		GJ	Min	-	Max	Min	-	Max	Min	-	Мах	
	In the table energy in- and ouputs ra expressed as the coefficient of perfor source temperature, in other words The higher the temperature lift the le to low temperature heat pumps sinc Whilst 'standard' high temperature r (supply T <55 °C) are increasingly bei	rmance (COP), the temperatur ower the COP. I te the temperat residential heat ing improved to	which is the rat re lift. For exam For instance, in cure lift is higher pumps have be preach 60-65°C	tio between he ople, a COP of 3 winter, the ten r. een specifically c at a reasonab	at output and el i means that 1 u nperature lift is l designed for hig le efficiency (Cai	ectricity input, ar init of electricity i larger, resulting in the supply tempera- rbon Trust and Ra	nd it depends o s used in orde n a lower COP atures, the des	on the difference r to produce 3 i . High temperat signs of regular	ce between he units of heat a ture heat pur low temperat	eat supply temp and 2 units are nps have lower ture residential	perature and ambient heat. COPs compared heat pumps	
Energy in- and Outputs explanation	(EHPA) writes that increasingly often Based on the sources found, the tota Explanation by source:						ranges betwe	een 1,02 and 2,0	07 . The total	COP-range is 2	,2 to 4.	
	Khoa Xuan Le et al. (2019) studied th 3. combined mode. They found that 11 kWth heat pump with nominal CC system performance factor in which	direct mode (w DP of 2,5. The S	vithout storage .PF value report	in a tank) had t	he highest over	all SPF. The value	s reported in t	their study com	e from field t	rails in Norther	n Ireland with a	
	A study by Watanabe et al. (2017) of *C, and the heating COP reaches 4,0											
	Daikin Altherma HT is a cascading sy of the 11 kWth system for space hea 2019). The COP of this heat pump ca 2,07 on average (Shah & Hewitt, 201 period the COP (in direct mode mea According to a review study conduct Services, 2016). Comparing standars	ating at a delive in reach up to 3 L5). Performand ning without ta ted by Carbon T dized test result	ry T of 55 °C (in ;,08 (Daikin, 20) ce testing occur nk storage) var rust (2016) the s between low	Iternal operatir 19). Shah & He rred during win ied within the r rre is a lack of ir and high tempe	ng T of 25-80°C) witt (2015) foun ter period (from range 1.82 to 2.3 n-use performar erature heat pur	is 2,65, that of th nd that during a fi n 26/11/2014 to 3 38 with an average nce data, but ther mps gives an idea	e 14 kWth sy ve-month ope 10/02/2015) w e of 2.07. e are lab test o f the differe	stem is 2,66 and cration testing ti which also includ results available nces in perform	d that of the 1 he 11 kWth D ded the colde e (Carbon Tru nance. The stu	16 kWth system laikin heat pum st days of the y st and Rawling: udy indicates la	n is 2,61 (Daikin, up had a SPF of rear. During this s Support b test COPs	
	ranging from 2, 2 to 3,1 for the air source heat pump studied at an outside air temperature of 7 * C and at a 5 * C delivery temperature. Too few results were obtained for the SCOP (in the study refered to as the "SSHEE") at 65*C to indicate a value, but results at 55*C (at an air temperature of 7 * C) indicate SCOP values from 1,02 to 1,35 for air source heat pumps. It can be expected that the SCOP at a delivery T of 65*C is even lower, but here we assume the same SCOP (between 1,02 and 1,35). This results seems somewhat on the low side, considering it is only slightly higher than electrical resistance heating (COP=1). We do take these results into account to estimate the SPF-range in the table above. Projections (targets): Based on COP improvement percentages mentioned by IEA (IEA ETSAP, 2013) the COPs in 2030 are projected to be 30-50% higher compared to 2013. For 2050, an increase of 40 to 60% compared to 2013 is projected (IEA ETSAP, 2013) because this is compared to 2013 we take the minimum percentage improvement in each case (so above we show 30% improvement in and the source is above.											
	2030 and 40% in 2050, both compar		Jecause (1113 15 c	ompared to 20	15 we take the	minimum percen	lage improve	inent in each ca	336 (30 800 46	we show 50/61	improvement in	
MATERIAL FLOWS (OPTIONAL)												
MATERIAL FLOWS (OPTIONAL)	Material	Unit		Current			2030			2050		
MATERIAL FLOWS (OPTIONAL) Material flows	Material	Unit	Min	Current - -	Max	Min	2030 - -	Мах	Min	-	Мах	
	Material	Unit		Current - -			2030 - - -			2050 - - -		
Material flows	Material	Unit	Min Min Min	Current - - - -	Max Max	Min Min	2030 - - -	Max Max	Min Min	2050 - - - -	Max Max	
	nissions or emissions reductions (e.g.	. CCS)		-			-			-		
Material flows Material flows explanation				Current - - - Current			2030 - - - 2030			2050 - - - - 2050		
Material flows Material flows explanation	nissions or emissions reductions (e.g.	. CCS)		-			-			-		
Material flows Material flows explanation	nissions or emissions reductions (e.g.	. CCS)	Min	-	Мах	Min	-	Мах	Min	-	Max	
Material flows Material flows explanation	nissions or emissions reductions (e.g.	. CCS)	Min	-	Мах	Min	-	Мах	Min	-	Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er	nissions or emissions reductions (e.g.	. CCS)	Min	-	Мах	Min	-	Мах	Min	-	Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er	nissions or emissions reductions (e.g.	. CCS)	Min Min Min Min	-	Max Max Max Max	Min Min Min Min	-	Max Max Max Max	Min Min Min Min	-	Max Max Max Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions	nissions or emissions reductions (e.g.	. CCS)	Min Min Min	-	Max Max Max	Min Min Min	-	Max Max Max	Min Min Min	-	Max Max Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related en Emissions Emissions explanation OTHER	nissions or emissions reductions (e.g Substance	. CCS)	Min Min Min Min	- - - - - - - - - - - - - - - - - - -	Max Max Max Max	Min Min Min Min	- - - - - - - - - - - - -	Max Max Max Max	Min Min Min Min	- - - 2050 - - - - - - - - - - - -	Max Max Max Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions	nissions or emissions reductions (e.g. Substance	. CCS)	Min Min Min Min	- - - - - - - - - - - - - - - - - - -	Max Max Max Max	Min Min Min Min	-	Max Max Max Max	Min Min Min Min	-	Max Max Max Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related en Emissions Emissions explanation OTHER	nissions or emissions reductions (e.g Substance	. CCS)	Min Min Min Min	- - - - - - - - - - - - - - - - - - -	Max Max Max Max	Min Min Min Min	- - - - - - - - - - - - -	Max Max Max Max	Min Min Min Min	- - - 2050 - - - - - - - - - - - -	Max Max Max Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions Emissions explanation OTHER Parameter	nissions or emissions reductions (e.g. Substance	. CCS)	Min Min Min Min Min 347		Max Max Max Max Max Max	Min	- - - - - - - - - - - - - - - - - - -	Max Max Max Max Max Max	Min Min Min Min Min Min	- - - - - - - - - - - - - - - - - - -	Max Max Max Max Max Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions Emissions explanation OTHER Parameter	nissions or emissions reductions (e.g. Substance	. CCS)	Min Min Min Min	- - - - - - - - - - - - - - - - - - -	Max Max Max Max Max	Min Min Min Min Min Min Min Min Min	- - - - - - - - - - - - -	Max Max Max Max Max	Min Min Min Min	- - - 2050 - - - - - - - - - - - -	Max Max Max Max Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions Emissions explanation OTHER Parameter	nissions or emissions reductions (e.g. Substance	. CCS)	Min Min Min Min Min 347		Max Max Max Max Max Max	Min	- - - - - - - - - - - - - - - - - - -	Max Max Max Max Max Max	Min Min Min Min Min Min	- - - - - - - - - - - - - - - - - - -	Max Max Max Max Max Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions Emissions explanation OTHER Parameter	nissions or emissions reductions (e.g. Substance	. CCS)	Min Min Min Min Min Min Min		Max Max Max Max Max Max Max Max Max	Min Min Min Min Min Min Min Min Min	- - - - - - - - - - - - - - - - - - -	Max Max Max Max Max Max Max	Min Min Min Min Min Min Min	- - - - - - - - - - - - - - - - - - -	Max Max Max Max Max Max Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Modified radiators (occasional)	nissions or emissions reductions (e.g. Substance	t pumps do not	Min Min Min Min Min Min Min Min Min Kin Ravling mount to £30		Max	Min		Max Max Max Max Max Max Max Max Max Max	Min Min Min Min Min Min Min Min Min Min		Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions Emissions explanation OTHER Parameter	Application of high temperature head distribution systems using wet radia	t pumps do not tors (Carbon Trr lifter radiators ra re specifically i in winter and c	Min Min Min Min Min Min Min Min Min Min	Current -	Max	Min		Max	Min Min Min Min Min Min Min Min Min Min		Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Modified radiators (occasional)	Application of high temperature heat distribution systems using wer tadiat Services, 2016). Costs for these mos needed. Some types of heat pumps Note: Because of high heat demand costs (not included in costs section a	t pumps do not tors (Carbon Trr lifter radiators ra re specifically i in winter and c	Min Min Min Min Min Min Min Min Min Min	Current -	Max	Min		Max	Min Min Min Min Min Min Min Min Min Min		Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Modified radiators (occasional) Explanation Explanation REFERENCES AND SOURCES Carbon Trust and Rawlings Support Servic		t pumps do not tors (Carbon Tri lifed radiators are specifically ri in winter and c bove) are as fo nnection: 700 e	Min Min Min Min Min Min Min Min (necessarily ri (necessarily ri (necessarily ri est and Rawling Min Min Min Min Min Min Min Min Min Min	Current -	Max	Min		Max Max Max Max Max Max Max Max Max Max	Min Min Min Min Min Min Min Min Min Min		Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Modified radiators (occasional) Explanation Explanation REFERENCES AND SOURCES	Application of high temperature hea distribution systems using wet radial Services, 2016). Costs for these mod needed. Some types of heat pumps : Note: Because of high heat demand (one-time). Increased size of grid cor tors: (2016). Evidence gathering Low Ca ture Air Source Heat Pump Coupled w	t pumps do not tors (Carbon Trr tors (Carbon Trr tors (Carbon Trr are specifically i in winter and co bove) are as for howel are us for nection: 700 e	Min Min Min Min Min Min Min Min Min Min	- -	Max	Min		Max Max Max Max Max Max Max Max Max Max	Min Min Min Min Min Min Min Min Min Min		Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Modified radiators (occasional) Explanation Explanation REFERENCES AND SOURCES Carbon Trust and Rawlings Support Servic Kooa Xuan Le et al. (2019). High Tempera	Application of high temperature hea distribution systems using wet radial Sorvices, 2015/dwelling Application of high temperature hea distribution systems using wet radial Sorvices, 2016. Costs for these mod needed. Some types of heat pumps i Note: Because of high heat demand costs (not included in costs section a (one-time). Increased size of grid cor ion-time). Increased size of grid cor ture Air Source Heat Pump Coupled w 1.857. (http://www.sciencedirect.com	t pumps do not t pumps do not trors (Carbon Tri filed radiots a sepecifically i in winter and co bove) are as fo nnection: 700 e	Min Min Min Min Min Min Min Min Min Min		Max	Min		Max	Min Min Min Min Min Min Min Min Min Min		Max	
Material flows Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Modified radiators (occasional) Explanation Explanation REFERENCES AND SOURCES Carbon Trust and Rawlings Support Servit Knoa Xuan Le et al. (2019). High Tempera https://doi.org/10.1016/j.egypro.2019.0 IEA FTSAP (2013). Heat Pumps. IEA-ETSAF	Application of high temperature head distribution systems using wer tadiat Services, 2016). Costs for these most needed. Some types of heat pumps: Note: Because of high heat demand costs (not included in costs section a (one-time). Increased size of grid cor ture Air Source Heat Pump Coupled 1.857. (http://www.sciencedirect.com 2.37. (http://www.sciencedirect.com 2.37. (http://www.sciencedirect.com 2.37. and IRENA - Technology Policy Brief Tatal, vermogen, energieproductie	t pumps do not tors (Carbon Tri lifed radiators are specifically u bove) are as fo bove) are as fo nnection: 700 e	Min Min Min Min Min Min Min Min Min Min		Max	Min		Max	Min Min Min Min Min Min Min Min Min Min		Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Modified radiators (occasional) Explanation Explanation REFERENCES AND SOURCES Carbon Trust and Rawlings Support Serviv Khoa Yuan Le et al. (2019). High Tempera https://doi.org/10.1016/j.egypro.2019.0 IEA ETSAP (2013). Heat Pumps. IEA-ETSAP (205 statiline (2020). Warmtepompen, SAP	Application of high temperature hea distribution systems using wet radial Euro2015/dwelling Application of high temperature hea distribution systems using wet radial Services, 2016). Costs for these mod needed. Some types of heat pumps i Note: Because of high heat demand (one-time). Increased size of grid cor costs (not included in costs section a (one-time). Increased size of grid cor ices (2016). Evidence gathering Low Ca ture Air Source Heat Pump Coupled w 1.857. (http://www.sciencedirect.com a and IRRNA - Technology Policy Brief ital, vermogen, energieproductie hnologies to decarbonise heating and	t pumps do not t pumps do not transported and the second transport of the second are specifically in winter and ca bove) are as for howel are us for howel are us for howel are us for this Thermal Far this Thermal Far	Min Min Min Min Min Min Min Min Min Min	- -	Max	Min Min Min Min Min Min Min Min Min Min		Max Max Max Max Max Max Max Max Max Max	Min Min Min Min Min Min Min Min Min Min		Max	
Material flows Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Modified radiators (occasional) Explanation Explanation REFERENCES AND SOURCES Carbon Trust and Rawlings Support Servit Knoa Xuan Le et al. (2019). High Tempera https://doi.org/10.1016/j.egypro.2019.0 IEA FTSAP (2013). Heat Pumps. IEA-ETSAF	Application of high temperature hea distribution systems using wet radial Sorvices, 2015/dwelling Application of high temperature hea distribution systems using wet radial Services, 2016. Costs for these mod needed. Some types of heat pumps i Note: Because of high heat demand costs (note: Included in costs section a (one-time). Increased size of grid cor ture Air Source Heat Pump Coupled w 1.857. (http://www.sciencedirect.cor P and IRENA - Technology Policy Brief 1 tal, vermogen, energieproductie henologies to decarbonise heating and heat pump operational experience as	t pumps do not tors (Carbon Tri lifed radiators a re specifically in winter and c bove) are as fo nnection: 700 e	Min Min Min Min Min Min Min Min Min Min	- -	Max	Min		Max Max Max Max Max Max Max Max Max Max	Min Min Min Min Min Min Min Min Min Min		Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Modified radiators (occasional) Explanation Explanation REFERENCES AND SOURCES Carbon Trust and Rawlings Support Servic Knoa Xuan Le et al. (2019). High Tempera Htps://doi.org/10.1016/j.egyro.2019.0 IEA ETSAP (2013). Heat Pumps. IEA-ETSAI CBS statline (2020). Warmtepompen, aar Htps://doi.org/10.1016/j.egyro.2019.0 IEA ETSAP (2013). Heat Pumps. IEA-ETSAI CBS statline (2020). Warmtepompen, aar Explanation Explanation Staffell, I. & Brett, D.L. & Brandon, N. & CE (2018). Factsheets individuele warmte Vatanabe, C., Kegame, T., Imagawa, T., J	Application of high temperature hea distribution of high temperature hea distribution systems using wet radial Services, 2016). Costs for these mod needed. Some types of heat pumps i Note: Because of high heat demand needed. Some types of heat pumps i Note: Because of high heat demand (one-time). Increased size of grid cor costs (not include in costs section a (one-time). Increased size of grid cor 2 and IRENA - Technology Policy Bief haves, and Carabonise heating and heat pump operational experience as tataly vermogen, A review of domes technieken. Factsheet Luchtwarmtep	t pumps do not tours (Carbon Trr iffed radiators a re specifically vi in winter and cr bove) are as for howel are us for the Thermal En /science/article E19 – January 2 cooling (White a retrofit techn tic heat pumps omp	Min Min Min Min Min Min Min Min Min Min	- -	Max	Min		Max Max Max Max Max Max Max Max	Min Min Min Min Min Min Min Min Min Min		Max	
Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Modified radiators (occasional) Explanation Explanation Explanation Explanation Explanation EXPLANCES Explanation EXPLANCES EXPL		t pumps do not tors (Carbon Tri lifed radiators are specifically of in winter and cr bove) are as for in winter and cr bove) are as for in winter and cr bove) are as for in winter and cr bove) are as for the memory of the second the second second second the second sec	Min Min Min Min Min Min Min Min Min Min	- -	Max	Min		Max Max Max Max Max Max Max Max	Min Min Min Min Min Min Min Min Min Min		Max	
Material flows Material flows Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions Emissions explanation OTHER Parameter Modified radiators (occasional) Explanation E	Inisions or emissions reductions (e.g. Substance Unit Euro2015/dwelling Application of high temperature hea distribution systems using wet radiat Services, 2016). Costs for these mod needed. Some types of heat pumps: Note: Because of high heat demand costs (not included in costs section a (one-time). Increased size of grid cor ture Air Source Heat Pump Coupled 1.857. (http://www.sciencedirect.com and IRENA - Technology Policy Brief tat], vermogen, energieproductie hnologies to decarbonise heating and tats7. (http://www.sciencedirect.com and IRENA - Technology Policy Brief tat], vermogen, energieproductie hnologies to decarbonise heating and tats7. (http://www.sciencedirect.com and IRENA - Technology Policy Brief tat], vermogen, energieproductie hnologies to decarbonise heating and technieken, Factsheet Luchtwarmtep Nakashima, Y., Hayashi Y. and Yamm et and Statistics Report 2019. http://, Swe	t pumps do not tors (Carbon Tri lifed radiators are specifically of the specifically of the specifical	Min Min Min Min Min Min Min Min Min Min	Current -	Max	Min		Max Max Max Max Max Max Max Max	Min Min Min Min Min Min Min Min Min Min		Max	