TECHNOLOGY FACTSHEET

LARGE-SCALE HEAT NET	VORKS HIGH TEMPERATURE		THEATING								
Date of factsheet	5-3-2019		THEATING								
Nuthor	Robin Niessink										
ector	Households										
	Other sectors										
TS / Non-ETS	Non-ETS										
ype of Technology	Network This fastshast presents generalized information and figures on large cools high temperature (UT) heat networks for households also known as district heating. In district heating here										
escription	This factsheet presents generalized information and figures on large scale high temperature (HT) heat networks for households also known as district heating. In district heating home buildings and other end users are heated by a central heat source via an underground network of hot water pipes. A distinction can be made between large and small scale heat										
	distribution networks, the first supplying more than 150 TJ of heat per year (ECN, 2017). This factsheet focuses on large scale networks. Large scale district heating consists of main										
	heat source(s), back-up boiler(s), a primary heat transport pipeline, substations and a distribution network including connections to the dwellings. Inside a dwelling a heat delivery kit										
	(with heat exchanger) is installed in order to transfer hot water to the central heating system inside the dwelling. This factsheet considers all components of the heat network but do										
	not include heat losses of the main heat source(s) and heat losses of the heating systems inside the dwellings. Costs in the costs section are excluding costs of the main heat source.										
	Main heat sources that can be used	Main heat sources that can be used for large scale HT heat networks are:									
		Main heat sources that can be used for large scale HT heat networks are: - Combined heat and power (CHP) plants fired with gas, coal, muninipal solid waste or biomass									
		- Heat plants (heat only boilers) fired with biomass, natural gas or other fuels									
		- Industrial waste heat - Other renewable sources (e.g. geothermal energy)									
	- Other renewable sources (e.g. geot	nerna energy)								
	Heat from the heat source typically h	nas a temperat	ure of 100-130 °C. A t	ypical larg	e scale netwo	rk has a primary	transport p	ipeline of about	5km length (base	d on VESTA ı	model)
	(PBL/VESTA, 2017). Between primary							-			
	delivered to consumers typically has	•				•		· ·	arge scale networ	< typically ha	s one mair
	substation and mutiple smaller distri	bution substat	ions but there are als	o large sca	ne networks p	ossible without a	a main subs	tation.			
RL level 2020	TRL 9										
	Commercial technology. In 2015, 4 to	o 5% of total d	wellings in the Nethe	rlands was	connected to	a large scale hea	t network	ECN, 2017).			
ECHNICAL DIMENSIONS			0			0					
Capacity	Functional Unit					Val	ue and Ran	ge			
	PJ							-			1
					0.15		-				3
Potential	PJ	NL	Cu	rrent			2030			2050	
			I		-			-	I	Unlimited	
	24	Character	Min	-	Max	Min	-	Max	-	-	-
1arket share	%	Share number of	4.52		4.53	6.00		7.09	0.00		25.
apacity utlization factor		number of	4.53	-	4.53	6.00	-	20.00	9.09	-	50.
ull-load running hours per year									-		
nit of Activity	PJ/year										-
echnical lifetime (years)								2	40.00		
rogress ratio									-		
ourly profile	Yes										
••											
xplanation	 2015 (ECN, 2017). In the Netherlands consumer connections is larger than Based on this it is assumed here that 2017). In 2015, heat for large scale district h (ECN, 2017). Utilising heat from CHP Renewable heat from waste incinera of 18% consists of back up boilers as The heat demand varies over the yeaheat at peak demand (in winter) or v switching to a new main heat source In the future the share of district head 	100kW (ECN, 2 there were 35 heating originat plants for distr tors (~50% of v well as other h ar and the heat when the main (ECN, 2017).	2017). The large conn 50.000 dwellings conn ited mainly from natu ict heating results in waste input is biogen heat sources, mainly t supply of the source heat source is shut d	ections co ected to la ral gas fire a loss of el ic) and hea he non-bio (s) is load own for ma	nsist of mostly arge scale hea d CHP plants, ectricity produ t from biomas ogenic part of following. Hea	y non-residential t networks in 202 which had a 67% uction though. Th ss together accou waste input in w t is always availa	buildings. T buildings. T L5. Heat su share (this his loss is ak unted for 15 aste inciner ble thanks	he connections pplied by small s figure includes o out 0,18 GJe pe 5% of heat supply ators (ECN, 2017 to back-up boile	smaller than 100k scale networks wa coal fired CHP and r GJ heat supplied y in 2015 (ECN, 20 7). rs which are main amities and also in	W are mostl is about 2PJ I onsite heat I at 120 °C (E 017). The ren Iy gas-fired. In the transitio	y dwellings in 2015 (EC only boiler CN, 2011). naining sha They suppl
	environment, district heating has a p natural gas increases to 1,5 euro/m3 ECN indicates the total amount of co would lead to a share of 7% for distri CBS. Based on current policy, the total sha heating in the final energy demand c Based on a PBL study (PBL, 2017) the reaches a share of 25% in 2050. Assu	in 2050, total onnected dwell oct heating (larg are of district h of households (e share of hous	supply to households ings increases to 549 ge and small scale ne eating will only incre Schoots et al., 2017). eholds district heatin	of which 1 becomes 000 dwelli works tog ase slowly g could be	50 PJ is geothe 100PJ in 2050 ngs in 2030 (I ether). This sh . The National come as much	ermal and 60 PJ is or about 50% of ECN, 2015), which are is based on o Energy Outlook	s waste hea final heat c n is a projec surrent num scenario rea and 50% b	t (CE, 2016; PBL, lemand in 2050. tion based on ex aber of househol aches a share of y 2050. Another	, 2017). Based on xpectations from lds i.e. 7,8 million 6% in 2030 and 7 scenario made by	a scenario in the heat sup dwellings in % in 2035 for r Ecofys (Ecor	which tax pliers. This 2017 from r district
OSTS	environment, district heating has a p natural gas increases to 1,5 euro/m3 ECN indicates the total amount of co would lead to a share of 7% for distri CBS. Based on current policy, the total sha heating in the final energy demand co Based on a PBL study (PBL, 2017) the	in 2050, total onnected dwell oct heating (larg are of district h of households (e share of hous ming a slow in ting is unlimite	supply to households ings increases to 549 ge and small scale ne eating will only incre Schoots et al., 2017). eholds district heatin crease of 0,1% per ye ed as there are no tec	of which 1 becomes 000 dwelli works tog ase slowly g could be ar an estir hnical rest	50 PJ is geothe 100PJ in 2050 ngs in 2030 (I ether). This sh . The National come as much nate for the m rictions for he	ermal and 60 PJ is or about 50% of ECN, 2015), which are is based on o Energy Outlook n as 20% by 2030 inimum share of ating systems in:	s waste hea final heat c n is a projec surrent num scenario rea and 50% by household side dwellin	t (CE, 2016; PBL, lemand in 2050. tion based on es aber of househol aches a share of y 2050. Another s with disctrict h	, 2017). Based on xpectations from lds i.e. 7,8 million 6% in 2030 and 7 scenario made by	a scenario in the heat sup dwellings in % in 2035 for r Ecofys (Ecor	which tax pliers. This 2017 from r district
OSTS ear of Euro	environment, district heating has a p natural gas increases to 1,5 euro/m3 ECN indicates the total amount of co would lead to a share of 7% for distri CBS. Based on current policy, the total sha heating in the final energy demand c Based on a PBL study (PBL, 2017) the reaches a share of 25% in 2050. Assu Technical potential of HT district hea	in 2050, total onnected dwell oct heating (larg are of district h of households (e share of hous ming a slow in ting is unlimite	supply to households ings increases to 549 ge and small scale ne eating will only incre Schoots et al., 2017). eholds district heatin crease of 0,1% per ye ed as there are no tec	of which 1 becomes 000 dwelli works tog ase slowly g could be ar an estir hnical rest	50 PJ is geothe 100PJ in 2050 ngs in 2030 (I ether). This sh . The National come as much nate for the m rictions for he	ermal and 60 PJ is or about 50% of ECN, 2015), which are is based on o Energy Outlook n as 20% by 2030 inimum share of ating systems in:	s waste hea final heat c n is a projec surrent num scenario rea and 50% by household side dwellin	t (CE, 2016; PBL, lemand in 2050. tion based on es aber of househol aches a share of y 2050. Another s with disctrict h	, 2017). Based on xpectations from lds i.e. 7,8 million 6% in 2030 and 7 scenario made by	a scenario in the heat sup dwellings in % in 2035 for r Ecofys (Ecor	which tax pliers. This 2017 from r district
	environment, district heating has a p natural gas increases to 1,5 euro/m3 ECN indicates the total amount of co would lead to a share of 7% for distri CBS. Based on current policy, the total sha heating in the final energy demand of Based on a PBL study (PBL, 2017) the reaches a share of 25% in 2050. Assu Technical potential of HT district hea Main components of a heat network	in 2050, total onnected dwell oct heating (larg are of district h of households (e share of hous ming a slow in ting is unlimite (pipeline infra	supply to households ings increases to 549 ge and small scale nei heating will only incre Schoots et al., 2017). eholds district heatin crease of 0,1% per ye ed as there are no tec structure) have a tec	of which 1 becomes 000 dwelli works tog ase slowly g could be ar an estir hnical rest	50 PJ is geothe 100PJ in 2050 ngs in 2030 (I ether). This sh . The National come as much nate for the m rictions for he	ermal and 60 PJ is or about 50% of ECN, 2015), which are is based on o Energy Outlook n as 20% by 2030 inimum share of ating systems in:	s waste hea final heat c n is a projec surrent num scenario rea and 50% by household side dwellin	t (CE, 2016; PBL, lemand in 2050. tion based on es aber of househol aches a share of y 2050. Another s with disctrict h	, 2017). Based on xpectations from lds i.e. 7,8 million 6% in 2030 and 7 scenario made by	a scenario in the heat sup dwellings in % in 2035 for r Ecofys (Ecor	which tax pliers. This 2017 from r district
ear of Euro	environment, district heating has a p natural gas increases to 1,5 euro/m3 ECN indicates the total amount of co would lead to a share of 7% for distri CBS. Based on current policy, the total sha heating in the final energy demand of Based on a PBL study (PBL, 2017) the reaches a share of 25% in 2050. Assu Technical potential of HT district hea Main components of a heat network	in 2050, total onnected dwell oct heating (larg are of district h of households (e share of hous ming a slow in ting is unlimite (pipeline infra	supply to households ings increases to 549 ge and small scale nei heating will only incre Schoots et al., 2017). eholds district heatin crease of 0,1% per ye ed as there are no tec structure) have a tec	of which 1 becomes 000 dwelli tworks tog ase slowly g could be ar an estir hnical rest	50 PJ is geothe 100PJ in 2050 ngs in 2030 (I ether). This sh . The National come as much nate for the m rictions for he ime of 40-60 y 271.37	ermal and 60 PJ is or about 50% of ECN, 2015), which are is based on of Energy Outlook in as 20% by 2030 inimum share of ating systems ins rears (CE, 2009b)	s waste hea final heat c n is a projec surrent num scenario rea and 50% by household side dwellin	t (CE, 2016; PBL, lemand in 2050. ition based on ex aber of househol aches a share of y 2050. Another s with disctrict h gs. 249.66	, 2017). Based on xpectations from lds i.e. 7,8 million 6% in 2030 and 7 scenario made by eating is 9% by 20	a scenario in the heat sup dwellings in % in 2035 for 2 Ecofys (Ecol 250.	which tax pliers. This 2017 from r district fys, 2015)
ear of Euro westment costs	environment, district heating has a p natural gas increases to 1,5 euro/m3 ECN indicates the total amount of co would lead to a share of 7% for distri CBS. Based on current policy, the total sha heating in the final energy demand of Based on a PBL study (PBL, 2017) the reaches a share of 25% in 2050. Assu Technical potential of HT district hea Main components of a heat network 2015 <u>Euro per Functional Un</u> mln. € / PJ	in 2050, total onnected dwell oct heating (larg are of district h of households (e share of hous ming a slow in ting is unlimite (pipeline infra	supply to households ings increases to 549 ge and small scale nei heating will only incre Schoots et al., 2017). eholds district heatin crease of 0,1% per ye ed as there are no tec structure) have a tec	of which 1 becomes 000 dwelli tworks tog ase slowly g could be ar an estir hnical rest	50 PJ is geothe 100PJ in 2050 ngs in 2030 (I ether). This sh . The National come as much nate for the m rictions for he ime of 40-60 y	ermal and 60 PJ is or about 50% of ECN, 2015), which are is based on o Energy Outlook n as 20% by 2030 inimum share of ating systems in:	s waste hea final heat c n is a projec surrent num scenario rea and 50% by household side dwellin	t (CE, 2016; PBL, lemand in 2050. tion based on ex aber of househol aches a share of y 2050. Another s with disctrict h gs.	, 2017). Based on xpectations from lds i.e. 7,8 million 6% in 2030 and 7 scenario made by	a scenario in the heat sup dwellings in % in 2035 for 2 Ecofys (Ecol 250.	which tax pliers. This 2017 from r district fys, 2015)
	environment, district heating has a p natural gas increases to 1,5 euro/m3 ECN indicates the total amount of co would lead to a share of 7% for distri- CBS. Based on current policy, the total sha heating in the final energy demand of Based on a PBL study (PBL, 2017) the reaches a share of 25% in 2050. Assu Technical potential of HT district heat Main components of a heat network 2015 Euro per Functional Un	in 2050, total onnected dwell oct heating (larg are of district h of households (e share of hous ming a slow in ting is unlimite (pipeline infra	supply to households ings increases to 549 ge and small scale nei heating will only incre Schoots et al., 2017). eholds district heatin crease of 0,1% per ye ed as there are no tec structure) have a tec Cu	of which 1 becomes 000 dwelli tworks tog ase slowly g could be ar an estir hnical rest	50 PJ is geothe 100PJ in 2050 ngs in 2030 (I ether). This sh . The National come as much nate for the m rictions for he ime of 40-60 y 271.37 426.17 -	ermal and 60 PJ is or about 50% of ECN, 2015), which are is based on of Energy Outlook in as 20% by 2030 inimum share of ating systems ins rears (CE, 2009b) 177.14	s waste hea final heat c n is a projec surrent num scenario rea and 50% by household side dwellin	t (CE, 2016; PBL, lemand in 2050. tion based on ex aber of househol aches a share of y 2050. Another s with disctrict h gs. 249.66 392.08 -	, 2017). Based on xpectations from lds i.e. 7,8 million 6% in 2030 and 7 scenario made by eating is 9% by 20	a scenario in the heat sup dwellings in % in 2035 for 2 Ecofys (Ecol 250.	which tax pliers. This 2017 from r district fys, 2015) fys, 2015) 217. 340.
ear of Euro westment costs ther costs per year	 environment, district heating has a p natural gas increases to 1,5 euro/m3 ECN indicates the total amount of co would lead to a share of 7% for distric CBS. Based on current policy, the total sha heating in the final energy demand of Based on a PBL study (PBL, 2017) the reaches a share of 25% in 2050. Assure Technical potential of HT district heat Main components of a heat network 2015 2015 Euro per Functional Un mln. € / PJ mln. € / PJ 	in 2050, total onnected dwell oct heating (larg are of district h of households (e share of hous ming a slow in ting is unlimite (pipeline infra	supply to households ings increases to 549 ge and small scale nei heating will only incre Schoots et al., 2017). eholds district heatin crease of 0,1% per ye ed as there are no tec structure) have a tec	of which 1 becomes 000 dwelli tworks tog ase slowly g could be ar an estir hnical rest	50 PJ is geothe 100PJ in 2050 ngs in 2030 (fether). This sh . The National come as much nate for the m rictions for he ime of 40-60 y 271.37 426.17 - Max	ermal and 60 PJ is or about 50% of ECN, 2015), which are is based on of Energy Outlook in as 20% by 2030 inimum share of ating systems ins rears (CE, 2009b)	s waste hea final heat c n is a projec surrent num scenario rea and 50% by household side dwellin	t (CE, 2016; PBL, lemand in 2050. Stion based on ex- aber of househol aches a share of y 2050. Another s with disctrict h gs. 249.66 392.08 - <i>Max</i>	, 2017). Based on xpectations from lds i.e. 7,8 million 6% in 2030 and 7 scenario made by eating is 9% by 20	a scenario in the heat sup dwellings in % in 2035 for 2 Ecofys (Ecol 250.	which tax pliers. This 2017 from r district fys, 2015) fys, 2015) 217. 340. - - Max
ear of Euro nvestment costs ther costs per year ixed operational costs per year	environment, district heating has a p natural gas increases to 1,5 euro/m3 ECN indicates the total amount of co would lead to a share of 7% for distri CBS. Based on current policy, the total sha heating in the final energy demand of Based on a PBL study (PBL, 2017) the reaches a share of 25% in 2050. Assu Technical potential of HT district hea Main components of a heat network 2015 <u>Euro per Functional Un</u> mln. € / PJ	in 2050, total onnected dwell oct heating (larg are of district h of households (e share of hous ming a slow in ting is unlimite (pipeline infra	supply to households ings increases to 549 ge and small scale nei heating will only incre Schoots et al., 2017). eholds district heatin crease of 0,1% per ye ed as there are no tec structure) have a tec Cu 192.54 Min	of which 1 becomes 000 dwelli tworks tog ase slowly g could be ar an estir hnical rest	50 PJ is geothe 100PJ in 2050 ngs in 2030 (lether). This sh . The National come as much nate for the m rictions for he ime of 40-60 y 271.37 426.17 - Max 6.78	ermal and 60 PJ is or about 50% of ECN, 2015), which are is based on of Energy Outlook in as 20% by 2030 inimum share of ating systems ins rears (CE, 2009b) 1777.14 Min	s waste hea final heat c n is a projec surrent num scenario rea and 50% by household side dwellin	t (CE, 2016; PBL, lemand in 2050. tion based on ex- aches a share of 2050. Another s with disctrict h gs. 249.66 392.08 - Max 6.24	, 2017). Based on xpectations from lds i.e. 7,8 million 6% in 2030 and 7 scenario made by eating is 9% by 20 154.03 Min	a scenario in the heat sup dwellings in % in 2035 for 2 Ecofys (Ecol 250.	which tax pliers. This 2017 from r district fys, 2015) fys, 2015) 217. 340.
ear of Euro nvestment costs	 environment, district heating has a p natural gas increases to 1,5 euro/m3 ECN indicates the total amount of co would lead to a share of 7% for distric CBS. Based on current policy, the total sha heating in the final energy demand of Based on a PBL study (PBL, 2017) the reaches a share of 25% in 2050. Assure the total potential of HT district heat Main components of a heat network 2015 2015 Euro per Functional Un mln. € / PJ mln. € / PJ mln. € / PJ 	in 2050, total onnected dwell oct heating (larg are of district h of households (e share of hous ming a slow in ting is unlimite (pipeline infra	supply to households ings increases to 549 ge and small scale nei heating will only incre Schoots et al., 2017). eholds district heatin crease of 0,1% per ye ed as there are no tec structure) have a tec Cu	of which 1 becomes 000 dwelli tworks tog ase slowly g could be ar an estir hnical rest	50 PJ is geothe 100PJ in 2050 ngs in 2030 (fether). This sh . The National come as much nate for the m rictions for he ime of 40-60 y 271.37 426.17 - Max	ermal and 60 PJ is or about 50% of ECN, 2015), which are is based on of Energy Outlook in as 20% by 2030 inimum share of ating systems ins rears (CE, 2009b) 177.14	s waste hea final heat c n is a projec surrent num scenario rea and 50% by household side dwellin	t (CE, 2016; PBL, lemand in 2050. ition based on ex aber of househol aches a share of y 2050. Another s with disctrict h gs. 249.66 392.08 - Max 6.24 9.80	, 2017). Based on xpectations from lds i.e. 7,8 million 6% in 2030 and 7 scenario made by eating is 9% by 20	a scenario in the heat sup dwellings in % in 2035 for 2 Ecofys (Ecol 250.	which tax pliers. This 2017 from f district fys, 2015) fys, 2015) 217. 340.
ear of Euro evestment costs ther costs per year xed operational costs per year	 environment, district heating has a p natural gas increases to 1,5 euro/m3 ECN indicates the total amount of co would lead to a share of 7% for distric CBS. Based on current policy, the total sha heating in the final energy demand of Based on a PBL study (PBL, 2017) the reaches a share of 25% in 2050. Assure Technical potential of HT district heat Main components of a heat network 2015 2015 Euro per Functional Un mln. € / PJ mln. € / PJ 	in 2050, total onnected dwell oct heating (larg are of district h of households (e share of hous ming a slow in ting is unlimite (pipeline infra	supply to households ings increases to 549 ge and small scale nei heating will only incre Schoots et al., 2017). eholds district heatin crease of 0,1% per ye ed as there are no tec structure) have a tec Cu 192.54 Min	of which 1 becomes 000 dwelli tworks tog ase slowly g could be ar an estir hnical rest	50 PJ is geothe 100PJ in 2050 ngs in 2030 (lether). This sh . The National come as much nate for the m rictions for he ime of 40-60 y 271.37 426.17 - Max 6.78	ermal and 60 PJ is or about 50% of ECN, 2015), which are is based on of Energy Outlook in as 20% by 2030 inimum share of ating systems ins rears (CE, 2009b) 1777.14 Min	s waste hea final heat c n is a projec surrent num scenario rea and 50% by household side dwellin	t (CE, 2016; PBL, lemand in 2050. tion based on ex- aches a share of 2050. Another s with disctrict h gs. 249.66 392.08 - Max 6.24	, 2017). Based on xpectations from lds i.e. 7,8 million 6% in 2030 and 7 scenario made by eating is 9% by 20 154.03 Min	a scenario in the heat sup dwellings in % in 2035 for 2 Ecofys (Ecol 250.	which tax pliers. This 2017 from r district fys, 2015) fys, 2015) 217 340 Max 5

								[<u>2</u> C 0/				
	In this example of a cost calculation a heat network with 30.000 dwellings and 1 PJ heat supply per year is considered. A mix of 26% apartment dwellings and 74% rowhouses in considered which is based on the ratio in the Netherlands between these two types of dwellings obtained from CBS (CBS, 2016). All components of the heat network (see description) are included in the investment costs except for the main heat source. The reason for this is different sources can be used which leads to different costs. Depending on type of heat source (e.g. waste heat or geothermal) this leads to an additional investment of 200-2000 euros per dwelling based on the VESTA model (PBL/VESTA, 2017). Components included in the investment costs are the primary heat transport pipeline (5km length), main substation (with heat exchanger), substations, distribution network and connections to the dwellings including heat delivery kits, and back-up hoilers (with sufficient capacity to take over heat supply from main source). The cost range is based on the cost range for the different											
	including heat delivery kits, and back-up boilers (with sufficient capacity to take over heat supply from main source). The cost range is based on the cost range for the different components as given by INEK/Energieakkoord and the Vesta model of PBL (INEK/Energieakkoord, 2018; PBL/VESTA, 2017). In this case present average investment costs amount to 6k euros per appartment dwelling and 13 k euros per rowhouse. A higher share of apartments compared to ground based dwellings leads to lower average investments costs per dwelling											
Costs explanation	and vice versa. The fixed operational costs per year consists of maintenance costs for the different components of the network (PBL/VESTA, 2017). In the supporting calculations for the Dutch climate											
	agreement proposal (INEK/Energieakkoord, 2018) the fixed operational costs are assumed 2,5% of the initial investment. Costs can be further reduced by innovation and design optimization. Design optimization means for instance to adjust the pipe diameters to the peak demand over the year. In the calculation for the Dutch climate agreement proposal (INEK/Energieakkoord, 2018) costs reductions for heat networks in 2030 are assumed between 0% and 15% (avg. 8%). In the VESTA model (VESTA/PBL, 2017) a costs reduction of between 17%-24% (avg. 20%) is assumed in the long run. Costs reduction factors used above are 8% in 2030 and 20% in 2050.											
												ENERGY IN- AND OUTPUTS
	Energy carrier Main output:	Unit		Current	-1.00		2030	-1.00		2050	-1.00	
Energy carriers (per unit of main output)	Heat	PJ	-1.00	-	-1.00	-1.00	-	-1.00	-1.00	-	-1.00	
	Heat	PJ	1.10	-	1.25 1.30	1.20	-	1.20 1.20	1.15	-	1.15	
		PJ	Min	-	- Max	Min	-	Max	Min	-	Max	
		PJ	Min	-	- Max	Min	-	- Max	Min	-	- Max	
	Energy in- and outputs associated w belong to the heat source.	vith the total ne	etwork losses (fr	rom source to e	end consumer)	are given here.	Losses associa	ated with the he	eat production a	re not includ	ed as they	
	distribtution networks (e.g. convect distribution network can be substar network is clustered. Losses for futu assumed, losses are 20% in 2030, ar	ntial. Total netw ure heat netwo	vork losses gene rks can possibly	erally account f	or 10-30% (ave	rage about 25%) (ECN, 2017)	This is dependir	ng on length of n	etwork/how	densily the	
ATERIAL FLOWS (OPTIONAL)	Material	Unit		Current			2030			2050		
Material flows			Min		- Max	Min		- Max	Min		- Max	
					-		_	-		_	-	
Material flows explanation			Min	-	Max	Min	-	Max	Min	-	Мах	
MISSIONS (Non-fuel/energy-related en	nissions or emissions reductions (e. Substance	.g. CCS) Unit		Current			2030		[2050		
			Min	-	- Max	Min	_	- Max	Min	_	- Max	
missions			Min	_	- Max	Min	_	- Max	Min	_	- Max	
			Min		- Max	Min		- Max	Min		- Max	
					-			-			-	
Emissions explanation			Min	-	Max	Min	-	Max	Min	-	Max	
DTHER Parameter	Unit			Current			2030			2050		
Pump energy primary transport network					0.02	0.02 -		0.02	0.02 -		0.02	
Pump energy secondary distribution	on GJe/GJth		0.02	-	0.02 0.05	0.02	-	0.02 0.05	0.02	-	0.02	
etwork			0.05 Min	-	0.05 -	0.05	-	0.05 -	0.05	-	0.05	
			IVIIII	-	Max	Min	-	Max _	Min	-	Мах	
					-							
	An electric pump is required in orde	er to transport h	Min	- burce through t	- <i>Max</i> the primary and	<i>Min</i> I secondary hea	- t distribution	Max network. The a	Min mount of pump	- energy in GJ	Max e per GJth is	
xplanation	An electric pump is required in orde given above. Pump energy requiren		Min neat from the so	-	he primary and	l secondary hea		network. The a	mount of pump	- energy in GJ	_	
			Min neat from the so	-	he primary and	l secondary hea		network. The a	mount of pump	- energy in GJ	-	
REFERENCES AND SOURCES ICN (2017). Monitoring Warmte	given above. Pump energy requiren	nent for the pri	Min neat from the so mary network is	based on (ECN	the primary and N, 2011; BCRG, 3	l secondary hea 2015) and for se		network. The a	mount of pump	- energy in GJ	-	
REFERENCES AND SOURCES ICN (2017). Monitoring Warmte NEK/Energieakkoord (2018). Calculations ICN (2015). Developments of heat distrib	given above. Pump energy requiren for the Dutch Climate Agreement/E ution networks in the Netherlands	nent for the pri	Min neat from the so mary network is	s based on (ECN	the primary and N, 2011; BCRG, 3 Actors/Standaa	l secondary hea 2015) and for se rdfactoren	condary netv	network. The a	mount of pump	- energy in GJ	-	
REFERENCES AND SOURCES CN (2017). Monitoring Warmte NEK/Energieakkoord (2018). Calculations CN (2015). Developments of heat distrib CBS (2017). Energieverbruik particuliere v PBL (2017). Toekomstbeeld klimaatneutra	given above. Pump energy requiren o for the Dutch Climate Agreement/E ution networks in the Netherlands voningen; woningtype en regio's. Av ale warmtenetten in Nederland	nent for the pri	Min neat from the so mary network is	s based on (ECN	the primary and N, 2011; BCRG, 3 Actors/Standaa	l secondary hea 2015) and for se rdfactoren	condary netv	network. The a	mount of pump	- energy in GJ	-	
EFERENCES AND SOURCES CN (2017). Monitoring Warmte NEK/Energieakkoord (2018). Calculations CN (2015). Developments of heat distrib BS (2017). Energieverbruik particuliere v BL (2017). Toekomstbeeld klimaatneutra BL/VESTA (2017). Model examples/Valid	given above. Pump energy requiren of for the Dutch Climate Agreement/E ution networks in the Netherlands voningen; woningtype en regio's. Av ale warmtenetten in Nederland latievoorbeelden VESTA	nent for the pri	Min neat from the so mary network is pofdlijnen akkoo	s based on (ECN	the primary and N, 2011; BCRG, 3 Actors/Standaa	l secondary hea 2015) and for se rdfactoren	condary netv	network. The a	mount of pump	- energy in GJ	-	
REFERENCES AND SOURCES SCN (2017). Monitoring Warmte NEK/Energieakkoord (2018). Calculations SCN (2015). Developments of heat distrib CBS (2017). Energieverbruik particuliere v PBL (2017). Toekomstbeeld klimaatneutra PBL/VESTA (2017). Model examples/Valid CE (2016). Een klimaatneutrale warmtevo Nationaal Warmtenet Trendrapport (2018)	given above. Pump energy requirent of for the Dutch Climate Agreement/E ution networks in the Netherlands voningen; woningtype en regio's. Av ale warmtenetten in Nederland latievoorbeelden VESTA porziening voor de gebouwde omgev B). Nationaal Warmtenet Trendrappe	nent for the pri Doorrekening he railable at: http: ving – update 20	Min neat from the so mary network is pofdlijnen akkoo	s based on (ECN	the primary and N, 2011; BCRG, 3 Actors/Standaa	l secondary hea 2015) and for se rdfactoren	condary netv	network. The a	mount of pump	- energy in GJ	-	
REFERENCES AND SOURCES ECN (2017). Monitoring Warmte NEK/Energieakkoord (2018). Calculations ECN (2015). Developments of heat distrib CBS (2017). Energieverbruik particuliere v PBL (2017). Toekomstbeeld klimaatneutra PBL/VESTA (2017). Model examples/Valid CE (2016). Een klimaatneutrale warmtevo Nationaal Warmtenet Trendrapport (2018 Schoots et al. (2017). Nationale Energieve	given above. Pump energy requirent of for the Dutch Climate Agreement/E ution networks in the Netherlands voningen; woningtype en regio's. Av ale warmtenetten in Nederland latievoorbeelden VESTA porziening voor de gebouwde omgev B). Nationaal Warmtenet Trendrappo erkenning 2017.	nent for the pri Doorrekening he railable at: http: ving – update 20	Min neat from the so mary network is pofdlijnen akkoo	s based on (ECN	the primary and N, 2011; BCRG, 3 Actors/Standaa	l secondary hea 2015) and for se rdfactoren	condary netv	network. The a	mount of pump	- energy in GJ	-	
REFERENCES AND SOURCES CN (2017). Monitoring Warmte NEK/Energieakkoord (2018). Calculations CN (2015). Developments of heat distrib CBS (2017). Energieverbruik particuliere v PBL (2017). Toekomstbeeld klimaatneutra PBL/VESTA (2017). Model examples/Valid CE (2016). Een klimaatneutrale warmtevo Nationaal Warmtenet Trendrapport (2018 Schoots et al. (2017). Nationale Energieve CE (2009b). Cost drivers warmtelevering i	given above. Pump energy requirents for the Dutch Climate Agreement/E ution networks in the Netherlands voningen; woningtype en regio's. Av ale warmtenetten in Nederland latievoorbeelden VESTA porziening voor de gebouwde omgev B). Nationaal Warmtenet Trendrappe erkenning 2017. n Nederland.	nent for the pri Doorrekening he railable at: http: ving – update 20	Min neat from the so mary network is pofdlijnen akkoo	s based on (ECN	the primary and N, 2011; BCRG, 3 Actors/Standaa	l secondary hea 2015) and for se rdfactoren	condary netv	network. The a	mount of pump	- energy in GJ	_	
Explanation REFERENCES AND SOURCES ECN (2017). Monitoring Warmte NEK/Energieakkoord (2018). Calculations ECN (2015). Developments of heat distrib CBS (2017). Energieverbruik particuliere v PBL (2017). Toekomstbeeld klimaatneutra PBL/VESTA (2017). Model examples/Valid CE (2016). Een klimaatneutrale warmtevo Nationaal Warmtenet Trendrapport (2018 Schoots et al. (2017). Nationale Energieve CE (2009b). Cost drivers warmtelevering i ECN (2011). Restwarmtebenutting. Poten Ecofys (2015) De systeemkosten van warr CBS (2016). Vier op tien huishoudens wor	given above. Pump energy requirent of for the Dutch Climate Agreement/E ution networks in the Netherlands voningen; woningtype en regio's. Av ale warmtenetten in Nederland latievoorbeelden VESTA porziening voor de gebouwde omgev B). Nationaal Warmtenet Trendrappe erkenning 2017. n Nederland. tiëlen, besparing, alternatieven mte voor woningen	nent for the pri Doorrekening he vailable at: http: ving – update 20 ort	Min neat from the so mary network is boofdlijnen akkoo c//statline.cbs.n	s based on (ECN ord. Standard f	the primary and N, 2011; BCRG, 3 actors/Standaa	l secondary hea 2015) and for se rdfactoren SLNL&PA=81528	econdary netv	network. The a vork on BCRG (E	mount of pump	- energy in GJ	-	