TECHNOLOGY FACTSHEET

TNO

H2 INDUSTRIAL BOILER											
Date of factsheet	18-5-2020										
Author	Loes Rutten Industry: Generic										
Sector											
TS / Non-ETS	ETS										
	Hydrogen							<u> </u>			
Description	This factsheet considers steam boilers fueled by 100% hydrogen. Hydrogen can be used as an alternative input energy carrier for boilers. To be considered as a renewable option, the hydrogen (H2) has to be produced from a renewable source, such as from electrolysis using renewable electricity.										
	The combustion characteristics of hydrogen, such as velocity and flame heating properties, are different than from natural gas. The use of hydrogen in generic industrial boilers has proven feasible and only requires a retrofit of the burner to accommodate hydrogen gas properties (E4tech, 2015). Ricardo-AEA (2012) assumes that burner replacement is required to burning hydrogen at concentrations higher than 30%.										
	Whereas up to a 30% blend of hydrogen with natural gas has possibly the same efficiency as natural gas, 100% hydrogen oxyfuel burners are 15 percentage points more efficient tha natural gas due to flue gas condensation and recycling plus reduced volume of exhaust gas (Ricardo-AEA, 2012). Whether this includes the energy required for the production of O2 (that might be used instead of air in the combustion process) is not specified.										
TRL level 2020	TRL 9										
	Hydrogen burners are available and wider market for intentionally pure introduction by 2025, and ready for absent for the use of H2 in adjacent	hydrogen prod the mass mark	uction as fuel. (E4te et by 2035. Althoug	ch, 2015; VN h laws and s	IP, 2018). TKI afety regulat	Nieuw gas (2018) ions readily exist) estimates t for the use o	hat H2 boilers w	vill be ready for a wid	er market	·
ECHNICAL DIMENSIONS											
anacity	Functional Unit MWth;out					Valu	ue and Rang	ge			50.0
Capacity	wwth;out				1.00		-				30.0
	PJ/year	NL		Current			2030		20)50	
Potential			100.00	-	100.00 101.00	100.00	-	100.00 101.00	100.00	-	100.00 101.00
Market share	%		-	-	-	0.01	-	0.01 0.03	0.02	-	0.02 0.60
Capacity utlization factor).90		
ull-load running hours per year Jnit of Activity	PJ/year							7,9	00.00		
echnical lifetime (years)								2	5.00		
Progress ratio											
lourly profile	No										
	similar figure of 101 PJ: They describ PJ (<300°C) and 26 PJ (>300°C), whic Market share: E4tech (2015) studies may account for up to 50% of the in- to fuel the hydrogen boiler. Running hours: It is assumed a hydro Lifetime: The technical lifetime acco	h is 60% of the two scenarios dustrial fuel us ogen boiler car	industrial heat dem for the UK with targ e for high- and low-1 run 90% of the tim	nand, is inter geted H2 dep temperature e (E4tech, 20	preted as po ployment (cri heat in indu 015). Rounde	tential market for tical path) and wi stry in 2050. Thes d off, this implies	Hydrogen b despread H2 e figures are ~7900 runni	ooilers in this fac deployment (fu e under the assu	tsheet. Ill contribution) and f	inds that hy	/drogen
OSTS											
′ear of Euro	2015										
	Euro per Functional Un	nit	0	Current			2030		20	050	
nvestment costs	mln. € / MWth;out		0.12		0.12	0.12		0.12	0.02		0.1
Other costs per year	mln. € / MWth;out		0.12	-	-	0.12	-	-	0.02	-	-
ixed operational costs per year	mln. € / MWth;out		Min	-	<i>Max</i> 0.0040	Min	-	<i>Max</i> 0.0043	Min	-	<i>Max</i> 0.004
excl. fuel costs)			0.0040	-	0.0040	0.0043	-	0.0043	0.0043	-	0.004
/ariable costs per year	mln. € / MWth;out				-			-			-
			Min	-	Max	Min	-	Max	Min	-	Max
Costs explanation	Investment costs: There is only limit boilers is required. E4tech provides a In VNP (2018), Lux Research estimat Ricardo-AEA (2012) assumes that 30 would incur a 30% increased capital boiler (to be published). In that case solely as a retrofit, but as a standard Operational costs: The current OPEX	a CAPEX of 98. es 250 EUR/kV % blended hyc cost to pay for , a non-conser I technology op (is 3.2 EUR201	3 GBP/kW for a low V steam output for o rogen with natural p condensation and f vative scenario for 2 otion for new boilers 8/kW per year and e	temperature only retrofitt gas has no in flue gas recy 2050 leads to s (TNO, 2020 expected to p	e heat* and d ing an existin crease in cap cle. Represen an investme). go up to 4 EU	rying 100% hydro og 15MW boiler w bital costs compar otative data for a r ent cost of 23E/kW	gen boiler. ith a hydrog ed to a fossi natural gas b / for boilers 30 according	en burner. I equivalent, wh poiler can be fou burning 100% hy to E4tech (2015	ereas 100% hydrogen nd in the factsheet o ydrogen, when these 5). If OPEX follows the	n with oxyb n the indus won't be av	urner trial gas vailabe
	that H2 boiler costs will approximate In their analysis, Ricardo-AEA (2012) important for full lifecycle costs. * 'low temperature' refers to the de steel), and low temperature process	make the assu finition of the	mption that operat UK Department of E	ing costs hav nergy and Cl	ve no net incr imate Chang	e, specifying high	ossil equivale	ents, because on	going energy costs a		
ENERGY IN- AND OUTPUTS	Energy corrier	Unit		Turrent			2030		24	050	
	Energy carrier Main output:	Unit		Current	-1.00		2030	-1.00	2	120	-1.00
	Steam	PJ	-1.00	_	-1.00	-1.00		-1.00	-1.00		-1.0
	Hydrogen	PJ		I	1.00			1.00		!	1.0
Energy carriers (per unit of main output)			1.00	- [1.11	1.00	-	1.11	1.00	-	1.1
		PJ	Min	_ T	- Max	Min	-	- Max	Min	-	- Max
		DI	.*	I	-	171111		-			-
		PJ	Min	-	Max	Min	-	Max	Min	-	Max
	The energy efficiency is 85% based of Elisasson, 2002) and a LHV energy of		• · ·			•		-	•••		-
Energy in- and Outputs explanation	Elisasson, 2002) and a LHV energy co (2012) reports an efficiency of 100%	ontent of 10,8	(RVO, 2018). E4tech			•		-	•••		-

MATERIAL FLOWS (OPTIONAL)	Material	Unit		Current			2020			2050		
		Unit	Current			2030			2050			
Material flows			Min		Max	Min	_	- Max	Min	_	- Max	
			IVIIII	-	IVIUX	IVIIII	-	IVIUX	IVIIII	-	IVIUX	
			Min		Max	Min	_	Max	Min	_	Max	
Material flows explanation			IVIIII	-	IVIUX	IVIIII	_	IVIUX	IVIIII	-	IVIUX	
· ·	ted emissions or emissions reduction											
	Substance	Unit	1	Current		1	2030			2050		
	NOx	kton	-						2030			
		Kton	Min	-	Мах	Min	-	Мах	Min	-	Мах	
				<u> </u>	-			IVIGA		1	IVIGA	
Emissions			Min	-	Мах	Min	-	Мах	Min	-	Мах	
				1	-			-			-	
			Min	-	Мах	Min	-	Мах	Min	-	Мах	
				1	-			-				
			Min	-	Мах	Min	_	Мах	Min	-	Мах	
	According to Ilbas et al. (2005),	hydrogen can be a		I rnative to fossi			l 2 SOv and unl			I s from the hy		
	The allowed emission of hydrog	gen boilers is not sp	ecified in the D	outch regulation	n 'Besluit activit	teiten leefomge	eving' (2020). I	n article 4.431l	of this regulati	on, the nitrog	gen oxides	
	The allowed emission of hydrog emission boundary value other	•		-		-	• •		of this regulati	on, the nitrog	gen oxides	
_	emission boundary value other	•		d between 70 i		-	mg/Nm3 (bio		of this regulati		gen oxides	
OTHER Parameter		•		-		-	• •		of this regulati	on, the nitrog 2050	gen oxides	
-	emission boundary value other	•	poilers is define	d between 70 i	ng/Nm3 (natur	al gas) and 275	mg/Nm3 (bio	mass).				
_	emission boundary value other	•		d between 70 i		-	mg/Nm3 (bio		of this regulati		gen oxides	
-	emission boundary value other	•	Min	d between 70 i	mg/Nm3 (natur - Max -	Min	mg/Nm3 (bio	mass). - Max -	Min		Мах	
-	emission boundary value other	•	poilers is define	d between 70 r	ng/Nm3 (natur	al gas) and 275	mg/Nm3 (bio 2030	mass).				
_	emission boundary value other	•	Min Min	d between 70 r	mg/Nm3 (natur - Max - Max -	Min Min	mg/Nm3 (bio 2030	mass). - Max - Max -	Min		Max Max	
_	emission boundary value other	•	Min	d between 70 r	mg/Nm3 (natur - Max -	Min	mg/Nm3 (bio 2030	mass). - Max -	Min		Max	
_	emission boundary value other	•	Min Min	d between 70 r	mg/Nm3 (natur - Max - Max - Max -	Min Min	mg/Nm3 (bio 2030	mass). - Max - Max -	Min		Max Max Max	
Parameter	emission boundary value other	•	Min Min Min	Current	mg/Nm3 (natur - Max - Max -	Min Min Min	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max	
_	emission boundary value other	•	Min Min Min	Current	mg/Nm3 (natur - Max - Max - Max -	Min Min Min	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max Max	
Parameter Explanation REFERENCES AND SOURCES	emission boundary value other	types of >400 kW k	Min Min Min Min Min	Current	mg/Nm3 (natur - Max - Max - Max -	Min Min Min	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max Max	
Parameter Explanation REFERENCES AND SOURCES Scenarios for deployment of hydros	emission boundary value other Unit Unit gen in contributing to meeting carbon	types of >400 kW k	Min Min Min Min Min	Current	mg/Nm3 (natur - Max - Max - Max -	Min Min Min	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max Max	
Parameter Explanation REFERENCES AND SOURCES Ecenarios for deployment of hydrog ndustrial combustion boilers, IEA-E	emission boundary value other Unit Unit gen in contributing to meeting carbon ETSAP, 2010	types of >400 kW k	Min Min Min Min Min	Current	mg/Nm3 (natur - Max - Max - Max -	Min Min Min	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max Max	
Parameter xplanation EFERENCES AND SOURCES cenarios for deployment of hydrogon ndustrial combustion boilers, IEA-E hydrogen as fuel for turbines and e	emission boundary value other Unit Unit gen in contributing to meeting carbon ETSAP, 2010	types of >400 kW b	Min Min Min Min Min	Current	mg/Nm3 (natur - Max - Max - Max -	Min Min Min	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max Max	
Parameter Explanation REFERENCES AND SOURCES Ecenarios for deployment of hydrog industrial combustion boilers, IEA-E Hydrogen as fuel for turbines and e Contouren van een Routekaart Wa	emission boundary value other Unit Unit gen in contributing to meeting carbon ETSAP, 2010 engines, K. Johansson, 2005	types of >400 kW k budgets and the 20 gie, 2018	Min Min Min Min 050 target, E4te		mg/Nm3 (natur - Max - Max - Max	al gas) and 275	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max Max	
Parameter Explanation REFERENCES AND SOURCES Ecenarios for deployment of hydrog ndustrial combustion boilers, IEA-E Hydrogen as fuel for turbines and e Contouren van een Routekaart Wa Hydrogen as burner fuel: modelling	emission boundary value other Unit Unit gen in contributing to meeting carbon ETSAP, 2010 engines, K. Johansson, 2005 terstof, TKI Nieuw Gas Topsector Energ	types of >400 kW k budgets and the 20 gie, 2018	Min Min Min Min 050 target, E4te		mg/Nm3 (natur - Max - Max - Max	al gas) and 275	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max Max	
Parameter xplanation EFERENCES AND SOURCES cenarios for deployment of hydrogen ndustrial combustion boilers, IEA-E lydrogen as fuel for turbines and e contouren van een Routekaart War lydrogen as burner fuel: modelling inergy and The Hydrogen Economy	emission boundary value other Unit Unit gen in contributing to meeting carbon ETSAP, 2010 engines, K. Johansson, 2005 terstof, TKI Nieuw Gas Topsector Energing g of hydrogen–hydrocarbon composite	types of >400 kW k budgets and the 20 gie, 2018 e fuel combustion a	Min Min Min Min 050 target, E4te		mg/Nm3 (natur - Max - Max - Max	al gas) and 275	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max Max	
Parameter xplanation EFERENCES AND SOURCES cenarios for deployment of hydrogen ndustrial combustion boilers, IEA-E lydrogen as fuel for turbines and e contouren van een Routekaart Wa lydrogen as burner fuel: modelling nergy and The Hydrogen Economy indverslag Haalbaarheidsstudie Ele	emission boundary value other Unit Unit gen in contributing to meeting carbon ETSAP, 2010 engines, K. Johansson, 2005 terstof, TKI Nieuw Gas Topsector Energy of hydrogen–hydrocarbon composite y, Bossel, Ulf & Eliasson, Baldur, 2003	types of >400 kW k budgets and the 20 gie, 2018 e fuel combustion a part of TNO, 2019	Min Min Min Min 050 target, E4te		mg/Nm3 (natur - Max - Max - Max	al gas) and 275	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max Max	
Parameter Explanation REFERENCES AND SOURCES iscenarios for deployment of hydrog ndustrial combustion boilers, IEA-E Hydrogen as fuel for turbines and e Contouren van een Routekaart Wa Hydrogen as burner fuel: modelling inergy and The Hydrogen Economy indverslag Haalbaarheidsstudie Ele Decarbonising the steam supply of	emission boundary value other Unit Unit gen in contributing to meeting carbon ETSAP, 2010 engines, K. Johansson, 2005 terstof, TKI Nieuw Gas Topsector Energing of hydrogen—hydrocarbon composite y, Bossel, Ulf & Eliasson, Baldur, 2003 ektrificatie bestaande gasketels, ECN p	types of >400 kW k budgets and the 20 gie, 2018 e fuel combustion an part of TNO, 2019 VNP, 2018	Min Min Min Min 050 target, E4te	Current Current Current - - - - - - - - - - - - -	mg/Nm3 (natur - Max - Max - Max	al gas) and 275	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max Max	
Parameter Explanation REFERENCES AND SOURCES Scenarios for deployment of hydrog ndustrial combustion boilers, IEA-E Hydrogen as fuel for turbines and e Contouren van een Routekaart Wa Hydrogen as burner fuel: modelling Energy and The Hydrogen Economy Eindverslag Haalbaarheidsstudie Ele Decarbonising the steam supply of Electrification of industry: Facilitati	emission boundary value other Unit Unit gen in contributing to meeting carbon ETSAP, 2010 engines, K. Johansson, 2005 terstof, TKI Nieuw Gas Topsector Energy of hydrogen–hydrocarbon composite y, Bossel, Ulf & Eliasson, Baldur, 2003 ektrificatie bestaande gasketels, ECN p the Dutch paper and board industry, N	types of >400 kW k budgets and the 20 rgie, 2018 e fuel combustion an part of TNO, 2019 VNP, 2018 ith power-to-heat in	Min Min Min Min 050 target, E4te	Current Current Current - - - - - - - - - - - - -	mg/Nm3 (natur - Max - Max - Max	al gas) and 275	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max Max	
Parameter Explanation REFERENCES AND SOURCES Scenarios for deployment of hydrog ndustrial combustion boilers, IEA-E Hydrogen as fuel for turbines and e Contouren van een Routekaart Wa Hydrogen as burner fuel: modelling Energy and The Hydrogen Economy Eindverslag Haalbaarheidsstudie Ele Decarbonising the steam supply of Electrification of industry: Facilitati Contouren van een Routekaart Wa	emission boundary value other Unit Unit gen in contributing to meeting carbon ETSAP, 2010 engines, K. Johansson, 2005 terstof, TKI Nieuw Gas Topsector Ener g of hydrogen—hydrocarbon composite y, Bossel, Ulf & Eliasson, Baldur, 2003 ektrificatie bestaande gasketels, ECN p the Dutch paper and board industry, N ing the integration of offshore wind wi	types of >400 kW k budgets and the 20 gie, 2018 e fuel combustion an part of TNO, 2019 VNP, 2018 ith power-to-heat in gie, 2018	Min Min Min Min 050 target, E4te	Current Current Current - - - - - - - - - - - - -	mg/Nm3 (natur - Max - Max - Max	al gas) and 275	mg/Nm3 (bio	mass). - Max - Max - Max -	Min Min Min		Max Max Max	

Annatarkoord dentergronanotale. De potente van rower to neut in de nederlanse industrie, 201

Steam Handbook: an introduction to steam generation and distribution, Endress+Hauser, 2017

The Future of Heating: A strategic framework for low carbon heat in the UK, Department of Energy and Climate Change, 2012

The Netherlands: list of fuels and standard CO2 emission factors, RVO, 2018

Flexibilisering industriele WKK, EnergyMatters, 2015

Dutch program for the acceleration of sustainable heat management in industry, ECN, 2017

Ecodesign Preparatory Study on Steam Boilers, PwC, Fraunhofer ISI and ICCS-NTUA, 2014

Besluit Activiteiten Leefomgeving, 2020

www.cleanboiler.org: boiler efficiency improvement - boiler-combustion, consulted 14/05/2020

TNO, internal consultation. 2020.