TECHNOLOGY FACTSHEET

HYDROGEN DIRECT REDUCTION STEELMAKING (HYBRIT) WITH ON-SITE ELECTROLYSIS Date of factsheet 20-8-2020 Author Kira West ndustry: Iron and steel Sector All ETS / Non-ETS ETS Type of Technology Emission reduction Description Direct reduction of iron is the solid state reduction of iron oxide into iron. The principle of hydrogen direct reduction is that pre-heated iron ore is converted into direct reduced iron (DRI) in a shaft reactor, with hydrogen acting as the reducing agent and energy source. The reactor produces direct reduced iron (DRI), also called sponge iron, which is a porous, solid iron with low carbon content (below that of pig iron from a blast furnace). It can then be either compacted into hot briquetted iron (HBI, a briquette of DRI compacted at 650 degC to at least 5000kg/cubic meter to facilitate storage and transport) or fed directly into an electric arc furnace (EAF) to produce steel. The hydrogen can be supplied from any external source. In the case of electrolysis, water produced in the shaft (through the reaction of H2 and O2) can be supplied back to the electrolyser. The EAF melts and converts the iron into liquid steel, either based on 100% DRI or HBI, or in combination with steel scrap. Theoretically the process can be designed to operate with either methane or hydrogen gas as the reducing agent (or a mixture of these gases), which could allow a gradual transition towards green hydrogen as the main reducing agent for the steel sector. This factsheet looks at the case where 100% HBI and 100% hydrogen are used, and hydrogen is produced on-site via a PEM (polymer electrolyte membrane) electrolyser. Some carbon content (typically a small amount of pulverized coal, bio-methane or other biogenic carbon source is used) needs to be added to the metal in the EAF to create steel with the right composition. Natural gas-based DRI processes have been widely commercially applied worldwide. Hydrogen direct reduction steelmaking technology was first applied commercially in Trinidad in 1999 to 2001 and 2004 to 2016, under the name Circored. The project was mothballed by ArcelorMittal in 2017. That project produced direct reduced iron (DRI) from iron ore fines in fluidised bed reactors with hydrogen from steam methane reforming (SMR) as the reducing agent. The project was shut down in 2016 due to cost-cutting at ArcelorMittal, in an environment of low steel prices and potential electricity and gas price increases in Trinidad. HYBRIT is a hydrogen direct reduction process currently under development that uses iron ore pellets for steelmaking in a shaft reactor at about 800 degC, in combination with steel conversion of DRI in an electric arc furnace (EAF). The project aims to have sufficient hydrogen storage on site so that electrolysers powered by intermittent renewable energy sources can be used to produce the required hydrogen. A key benefit of this technology, according to researchers, is its flexibility of operation, with storage of H2 and of briquettes of iron (HBI, hot briquetted iron) allowing for the shaft where the reduction reaction takes place (which is designed to operate continuously) to operate independently from the EAF (which operates in batches) and the electrolyser (which is highly dependent on electricity prices). The project aims to eliminate all fossil fuels from the steelmaking process, though a carbon source is needed to give the steel the proper characteristics. The long term ambition is to use high-quality biomass to provide this carbon in the EAF, but current designs sometimes still include a small amount of pulverized coal to provide the necessary carbon content of the steel. The reference for this factsheet is the HYBRIT process, with coal as a source of carbon and on-site electrolysis for hydrogen production. (Vogl et al., 2018; Dolci, 2018; IIMA, 2020) TRL level 2020 TRL 5 The Circored process has been applied commercially, though ArcelorMittal noted that the process never ran on 100% hydrogen (Dolci 2018). The alternative hydrogen direct reduction option, HYBRIT, that is the reference for this factsheet, is based on existing technologies but requires demonstration and is at a lower TRL level. HYBRIT aims to have a commercial fossil-free steel option by 2035, and a pilot line is currently in development, with plans to operate from 2021-2024. The major difference with existing direct reduction options, which may require adjustments to the technology and additional experience before commercialization, is the use of 100% hydrogen as compared to natural gas or syngas. This may require changes in reactor design. In addition, carbon must be added to the EAF to reach the necessary carbon content in steel, in comparison to conventional steelmaking processes where carbon must be removed, potentially requiring changes to the furnace design. (Vogl et al., 2018; HYBRIT, 2019) **TECHNICAL DIMENSIONS** Value and Range **Functional Unit** Mton crude steel 1.50 Capacity

				1 50						1 50	
		1.50				-		1.50			
				Current			2030			2050	
otential			1 die	-	Adams	D die	-	Mary	A dire	-	1 A and
arket share		%	Min	-	Мах	Min	-	Мах	Min	-	Max
Market share		70	Min	-	Мах	Min	-	Мах	Min	-	Мах
apacity utlization factor					1110/X				1.00		
ull-load running hours per year											
nit of Activity	Mton crude										
echnical lifetime (years)	steel/year								20.00		
rogress ratio									20.00		
ourly profile											
xplanation	Typical capacity has been given ba no units currently operating comr	•	state-of-the-art	natural gas-ba	sed direct redu	uction plants. Po	otential and ma	arket share can	not be quant	ified at this p	oint as there a
OSTS											
ear of Euro	2015										
Investment costs	Euro per Functional		Current			2030		2050			
	mln. € / Mton crude steel		-				574.00	1			
			Min	-	Max	574.00	-	932.00	Min	-	Мах
ther costs per year	mln. € / Mton crude ste	el		-			-			-	
			Min	-	Мах	Min	-	Max	Min	-	Max
ixed operational costs per year excl. fuel costs)	mln. € / Mton crude steel mln. € / Mton crude steel		1 die	-	Adams	17.00	17.22	17.00	A dire	-	1.1.00
			Min	-	Мах	17.22	-	17.22	Min		Max
Variable costs per year	mm. e/ mion crude ste	Min	-	Мах	Min	-	Мах	Min	-	Мах	
	percent more costly per tonne of	crude steel than	•	-	today's comm	odity and energ		ever, with rising	CO2 costs ar	nd declining g	reen electricit
osts explanation	prices, their fossil-free steel would These CAPEX values include iron of electrolyzer to produce hydrogen Insufficient data has been found t electricity, biomass, iron ore).	be able to composite to composite to composite the pelletising, the for the process.	e direct reducti	on shaft react	or, an EAF (elec	ctric arc furnace	e), associated lin				
	prices, their fossil-free steel would These CAPEX values include iron of electrolyzer to produce hydrogen Insufficient data has been found t	be able to composite to composite to composite the pelletising, the for the process.	e direct reducti	on shaft react	or, an EAF (elec	ctric arc furnace	e), associated lin				
osts explanation NERGY IN- AND OUTPUTS	prices, their fossil-free steel would These CAPEX values include iron of electrolyzer to produce hydrogen Insufficient data has been found t electricity, biomass, iron ore).	be able to composite to composite to composite the pelletising, the for the process.	e direct reducti	on shaft react	or, an EAF (elec	ctric arc furnace	e), associated lin nce costs do no 2030				
	prices, their fossil-free steel would These CAPEX values include iron of electrolyzer to produce hydrogen Insufficient data has been found t electricity, biomass, iron ore). Energy carrier Main output:	I be able to com re pelletising, th for the process. o quantify the va	e direct reducti riable costs for	on shaft reactor this process. F	or, an EAF (elec	ctric arc furnace	e), associated lin nce costs do no 2030 12.42	t include the ra	w materials o	or energy des	cribed below
	prices, their fossil-free steel would These CAPEX values include iron of electrolyzer to produce hydrogen Insufficient data has been found t electricity, biomass, iron ore).	be able to com re pelletising, th for the process. o quantify the va Unit	e direct reducti	on shaft react this process. F Current - -	or, an EAF (elec	ctric arc furnace	e), associated lin nce costs do no 2030 12.42 –			2050 - –	
NERGY IN- AND OUTPUTS	prices, their fossil-free steel would These CAPEX values include iron of electrolyzer to produce hydrogen Insufficient data has been found t electricity, biomass, iron ore). Energy carrier Main output:	be able to com re pelletising, th for the process. o quantify the va Unit	e direct reducti riable costs for Min	on shaft react this process. F Current - - -	or, an EAF (electric level) ixed operating	ctric arc furnace and maintenar	e), associated lin nce costs do no 2030 12.42 – 2.02	t include the ra	w materials of Min	2050 - - - -	cribed below
NERGY IN- AND OUTPUTS	prices, their fossil-free steel would These CAPEX values include iron of electrolyzer to produce hydrogen Insufficient data has been found t electricity, biomass, iron ore).	be able to compresent to compre	e direct reducti riable costs for	on shaft react this process. F Current - -	or, an EAF (elec	ctric arc furnace	e), associated lin nce costs do no 2030 12.42 –	t include the ra	w materials o	2050 - –	cribed below
	prices, their fossil-free steel would These CAPEX values include iron of electrolyzer to produce hydrogen Insufficient data has been found t electricity, biomass, iron ore).	be able to compresent to compre	e direct reducti riable costs for Min Min	on shaft react this process. F Current - - -	or, an EAF (electric lines) ixed operating Max Max	ctric arc furnace and maintenar 12.42 2.02	e), associated lin nce costs do no 2030 12.42 – 2.02	t include the ra	w materials of Min	2050 - - - -	cribed below Max
NERGY IN- AND OUTPUTS	prices, their fossil-free steel would These CAPEX values include iron of electrolyzer to produce hydrogen Insufficient data has been found t electricity, biomass, iron ore).	I be able to compresent to compre The compresent to compr	e direct reducti riable costs for Min	on shaft react this process. F Current - - -	or, an EAF (electric level) ixed operating	ctric arc furnace and maintenar	e), associated lin nce costs do no 2030 12.42 – 2.02 – –	t include the ra	w materials of Min	2050 - - - -	cribed below

MATERIAL FLOWS (OPTIONAL)												
	Material	Unit	Current			2030			2050			
Material flows Material flows explanation	Iron ore pellets	Mton	-			1.50			-			
		WITCH	Min	-	Max	1.50	-	1.50	Min	-	Max	
	Crude steel	Mton steel		-	-		-1.00	-		_		
			Min	-	Мах	-1.00	-	-1.00	Min	-	Max	
	This factsheet assumes that the steelmaking process operates on 100% direct reduced iron. A 50% scrap input to the EAF is also technically possible, and would lower the iron ore											
· · · · · · · · · · · · · · · · · · ·	needs to about 0.74 Mton/Mton s											
EMISSIONS (Non-fuel/energy-related en			_									
	Substance	Unit	Current			2030				2050		
	CO2 (process)	Mton	-			0.03				-		
	L	_ _ '	Min	-	Мах	0.03	-	0.05	Min	-	Max	
			A. 41.	-		6 <i>4</i> *	-		A. 41.	-	1.4	
Emissions		_ _ '	Min	-	Мах	Min	-	Max	Min	-	Max	
			A #	-	A. 4	A. 4	-	A	A.45-2	-	6 <i>A</i>	
	L	<u> </u> '	Min	-	Мах	Min	-	Max	Min	-	Max	
			Min	-	Мах	Min	-	Мах	Min	-	Мах	
	The CO2 emissions shown above a			- amissions rela			- 02 is amitted i			- Limostone (Ca		
Emissions explanation	CO2), in the degradation of electro	•						•				
	CO2), in the degradation of closes						while the othe		cu us co ₂ ,			
OTHER												
Parameter	Unit			Current		2030			2050			
				-			0.07		-			
Lime (CaO) (flux)	Mton		Min	_	Мах	0.05	-	0.10	Min	_	Мах	
Oxygen	Mton			-	11100	0.00	-0.41	0.10	14111.	-	ITIMA	
			Min	_	Мах	-0.41	-	-0.41	Min	_	Мах	
	Mton			-	1		-0.09			-	·1	
Slag			Min	-	Мах	-0.09	_	-0.09	Min	_	Мах	
Coal (or other carbon source)	PJ			-	<u> </u>		0.15	ļ		-	'i	
			Min	-	Мах	0.15	-	0.15	Min	-	Max	
	In this factsheet, the process is as:	In this factsheet, the process is assumed to operate with 100% DRI input to the EAF, in which case no scrap is added. However, partial scrap input is also possible, which would lead to a										
	lower need for DRI in the EAF, and	l no additional ca	arbon requirem	ent in the EAF	. Coal here is us	ed as a materia	l (to provide th	ne necessary ca	irbon content t	o the steel) in	the EAF, and is	
	not combusted for energy purpose				-	-						
	Slag formation is highly dependen	•			•		•		9% of the mas	s of the DRI/HE	81 input. The	
Explanation	content of gangue oxides (MgO) in		•		-	and characteris	stics of the slag	<u>z</u> .				
	Oxygen production from the elect	rolyser assumes	a PEM electrol	yser with 72%	efficiency.							
REFERENCES AND SOURCES												
A. Keys, M. van Hout, and B. Daniëls (20	19), "Decarbonisation Options for th	ne Dutch Steel Ind	dustry," MIDDI	EN report, http	s://www.pbl.nl/	/sites/default/fi	les/downloads	s/pbl-2019-dec	arbonisation-o	ptions-for-the-	dutch-steel-	
industry_3723.pdf.												
Vogl, V., et al. (2018), "Assessment of hy	÷		Journal of Clea	aner Productio	n, pp 736-748.							
HYBRIT (2019), "HYBRIT - towards fossil-f		•										
Dolci, F. (2018), "Green hydrogen opport	tunities in selected industrial proces	ses",https://pub	lications.jrc.ec	europa.eu/reg	pository/bitstrea	am/JRC114766/	/kjna29637enn	.pdf.				
European Commission (2016), "Iron proc 01aa75ed71a1.	luction by electrochemical reductio	n of its oxide for	high CO2 mitig	gation" (IERO),	https://publicat	tions.europa.eu	/en/publicatio	n-detail/-/publ	lication/4255cc	156-9a96-11e6	9bca-	
Fischedick, M. et al (2014), "Techno-eco	nomic evaluation of innovative stee	I production tect	nologies " lou	rnal of Cleaner	Production nn	563-580						
Gvllenram. R., et al (2015), "Classification		•					a nanar: METE	C ESTAD 2015	Dusseldorf			

Gyllenram, R., et al (2015), "Classification of DRI/HBI based on the performance in the EAF A help for steelmaker's procurement of metallics," Conference paper: METEC ESTAD 2015, Dusseldorf.

International Iron Metallics Association (2020), "Hot Briquetted Iron," retrieved from: https://www.metallics.org/hbi.html.