TECHNOLOGY FACTSHEET

HYDROGEN DIRECT REDU	UCTION STEELMAKING	G (HYBRI	T) WITH E	EXTERNA	L HYDROG	GEN PROD	DUCTION					
Date of factsheet	20-8-2020											
huthor	Kira West											
ector	Industry: Iron and steel All											
TS / Non-ETS	ETS											
ype of Technology	Emission reduction											
escription	Direct reduction of iron is the solid state reduction of iron oxide into iron. The principle of hydrogen direct reduction is that pre-heated iron ore is converted into direct reduced iron (DRI) in a shaft reactor, with hydrogen acting as the reducing agent and energy source. The reactor produces direct reduced iron (DRI), also called sponge iron, which is a porous, soli iron with low carbon content (below that of pig iron from a blast furnace). It can then be either compacted into hot briquetted iron (HBI, a briquette of DRI compacted at 650 degC to at least 5000kg/cubic meter to facilitate storage and transport) or fed directly into an electric arc furnace (EAF) to produce steel.											
	The hydrogen can be supplied from any external source. In the case of electrolysis, water produced in the shaft (through the reaction of H2 and O2) can be supplied back to the electrolyser. The EAF melts and converts the iron into liquid steel, either based on 100% DRI or HBI, or in combination with steel scrap. Theoretically the process can be designed to operate with either methane or hydrogen gas as the reducing agent (or a mixture of these gases), which could allow a gradual transition towards green hydrogen as the main reducir agent for the steel sector. This factsheet looks at the case where 100% DRI and 100% hydrogen are used, and hydrogen is purchased from an external source. Some carbon content (typically a small amount of pulverized coal, bio-methane or other biogenic carbon source is used) needs to be added to the metal in the EAF to create steel with the right composition 1999 to 2001 and 2004 to 2016, under the name Circored. The project was mothballed by ArcelorMittal in 2017. That project produced direct reduced iron (DRI) from iron ore fines in fluidised bed reactors with hydrogen from steam methane reforming (SMR) as the reducing agent. The project was shut down in 2016 due to cost-cutting at ArcelorMittal, in an environment of low steel prices and potential electricity and gas price increases in Trinidad.											
	HYBRIT is a hydrogen direct reducti conversion of DRI in an electric arc can be used to produce the require briquettes of iron, allowing for the in batches) and the electrolyser (wh a carbon source is needed to give the sometimes still include a small amo source of carbon and an external H (Vogl et al., 2018; Dolci, 2018; IIMA	furnace (EAF). ed hydrogen. A shaft where th hich has operat he steel the pro- punt of pulveriz 2 source.	The project ain key benefit of t e reduction rea ting costs that a oper characteri	ns to have suff this technology action takes pla are dependent istics. The long	icient hydrogen y, according to ro ace (which is des on electricity pr term ambition i	storage on site esearchers, is it: igned to operat ices). The proje s to use high-qu	so that electro s flexibility of o e continuously ct aims to elim uality biomass	olysers powered operation, with y) to operate in hinate all fossil to provide this	by intermitte potential for s dependently f fuels from the carbon in the	ent renewable storage of H2 from the EAF steelmaking EAF, but curr	e energy source and of (which operate process, thoug ent designs	
	TRL 5 The Circored process has been applied commercially, though ArcelorMittal noted that the process never ran on 100% hydrogen (Dolci 2018). The alternative hydrogen direct reduction option, HYBRIT, that is the reference for this factsheet, is based on existing technologies but requires demonstration and is at a lower TRL level. HYBRIT aims to have a commercial fossil-free steel option by 2035, and a pilot line is currently in development, with plans to operate from 2021-2024. The major difference with existing direct reduction options, which may require adjustments to the technology and additional experience before commercialization, is the use of 100% hydrogen as compared to natural gas or syngas. This may require changes in reactor design. In addition, carbon must be added to the EAF to reach the necessary carbon content in steel, in comparison to conventional steelmaking processes where carbon must be removed, potentially requiring changes to the furnace design. (Vogl et al., 2018; HYBRIT, 2019)											
ECHNICAL DIMENSIONS			_									
	Functional Unit					V	alue and Rang	ge				
Capacity	Mton crude steel		1.50		- 1.50			1.50				
				Current			2030			2050		
Potential				-	1		-	1		-		
larket share		%	Min	-	Max	Min	_	Max	Min	-	Max	
		70	Min	-	Мах	Min		Мах	Min	-	Мах	
apacity utlization factor			<u>.</u>						1.00			
III-load running hours per year												
nit of Activity	Mton crude											
echnical lifetime (years)	steel/year								20.00			
ogress ratio												
ourly profile												
xplanation	Typical capacity has been given bas	-	state-of-the-ar	t natural gas-b	ased direct redu	iction plants. Po	otential and ma	arket share can	not be quanti	fied at this po	oint as there ar	
DSTS	no units currently operating commo	ercially.										
ar of Euro	2015											
	Euro per Functional U	nit	Current				2030			2050		
vestment costs	mln. € / Mton crude stee						414.00					
ther costs per year	mln. € / Mton crude stee		Min	-	Max	414.00	-	772.00	Min	-	Max	
ווכו נסזנז אבו אפמו	$\min (\varepsilon)$ with trude steel	I	Min	-	Мах	Min	-	Max	Min	-	Мах	
ked operational costs per year	mln. € / Mton crude stee	I		-			12.42	1		-		
xcl. fuel costs)	min E / Mton overlaster	1	Min	-	Мах	12.42	-	12.42	Min	-	Max	
ariable costs per year	mln. € / Mton crude stee	1	Min	-	Мах	Min	-	Мах	Min	-	Мах	
osts explanation	The pilot project for HYBRIT, soon t percent more costly per tonne of co prices, their fossil-free steel would The CAPEX values shown here assur prices. CAPEX includes iron ore pell Insufficient data has been found to electricity, biomass, iron ore).	rude steel than be able to com me that hydrog etising, the dir	conventional p pete with conv gen is purchase ect reduction s	processes give ventional, fossi ed from an unsp haft reactor, a	n today's commo I-based steel in t pecified external n EAF, and assoc	odity and energ the future (HYBI I source (from a tiated lime prod	y prices; howe RIT 2019). n SMR, SMR+0 uction capacit	ever, with rising CCS, or any type y.	CO2 costs and e of electrolyze	d declining gr er), purchased	een electricity d at market	
NERGY IN- AND OUTPUTS												
	Energy carrier	Unit		Current			2030			2050		
	Main output: Hydrogen	PJ	Min	-	Мах	3.00	6.82	8.40	Min	-	Мах	
		DI		-			2.94			-	IVIUA	
ergy carriers (per unit of main output)	Electricity	PJ	Min	-	Max	2.94	_	2.94	Min	-	Max	
	Biomass (high quality)	PJ	Min	-	Max	2.02	2.02	2.20	Min	-	Max	
		1	IVIIII	_	iviUX	2.02	-	2.20	IVIIII		ινιάχ	
		_ .	1	-			-			-		
		PJ	Min	-	Max	Min	-	Мах	Min	-	Max	
	This factsheet assumes that H2 is particular and the assumes that H2 is particular with 72% efficition of the assume of the assu	urchased from	an external so		an being produc	ed on site. HYBI	RIT (2019) con	verts electricity	consumption	•	H2 assuming a	

	Material	Unit	Unit Current		2030			2050			
Material flows	Iron ore pellets	Mton	-			1.50			-		
		Witton	Min	_	Max	1.50	_	1.50	Min	-	Max
	Crude steel	Mton steel		-			-1.00			-	
		Witch Steel	Min	-	Max	-1.00	-	-1.00	Min	-	Max
Material flows explanation	This factsheet assumes that th needs to about 0.74 Mton/Mt		s operates on	100% direct re	duced iron. A 5	50% scrap input	to the EAF is al	so technically	possible, and v	would lower th	e iron ore
MISSIONS (Non-fuel/energy-related)	ed emissions or emissions reductio	ns (e.g. CCS)									
	Substance	Unit	Current			2030			2050		
	CO2 (process)	Mton	<u> </u>			0.03			-		
			Min	-	Max	0.03	-	0.05	Min	-	Max
				-			-			-	
Emissions			Min	-	Max	Min	-	Max	Min	-	Max
				-		ļ,	-			-	
			Min	-	Max	Min	-	Max	Min	-	Max
				-		ļ,	-			-	
			Min	_	Max	Min	_	Max	Min	-	Max
OTHER Parameter	Unit			Current			2030			2050	
			-			0.07			-		
Lime (CaO) (flux)	Mton		Min	_	Мах	0.05	-	0.10	Min	_	Мах
Slag				-	-		-0.09			-	-
	Mton	ľ	Min	_	Max	-0.09	-	-0.09	Min	-	Max
Coal (or other carbon source)				-			0.15			-	÷
	PJ		Min	-	Max	0.15	-	0.15	Min	-	Max
0	0			-			-			-	-
		Min	_	Max	Min	-	Max	Min	-	Мах	
	In this factsheet, the process i	s assumed to operate	with 100% DF	I input to the E	AF, in which ca	ase no scrap is a	dded. Howeve	r, partial scrap	input is also p	ossible, which	would lead to
u Explanation	In this factsheet, the process i lower need for DRI in the EAF, not combusted for energy pur Slag formation is highly depen content of gangue oxides (Mg	and no additional car poses. It does, howev dent on the composit	bon requirem er, lead to pro ion of the DRI	ent in the EAF. cess CO2 emiss , HBI, and/or so	Coal here is us sions (included rap that is inpu	ed as a material above). ut to the EAF. Th	(to provide th	e necessary ca about 5% to 1	rbon content	to the steel) in	the EAF, and
Explanation REFERENCES AND SOURCES	lower need for DRI in the EAF, not combusted for energy pur Slag formation is highly depen	and no additional car poses. It does, howev dent on the composit	bon requirem er, lead to pro ion of the DRI	ent in the EAF. cess CO2 emiss , HBI, and/or so	Coal here is us sions (included rap that is inpu	ed as a material above). ut to the EAF. Th	(to provide th	e necessary ca about 5% to 1	rbon content	to the steel) in	the EAF, and
REFERENCES AND SOURCES A. Keys, M. van Hout, and B. Daniëls	lower need for DRI in the EAF, not combusted for energy pur Slag formation is highly depen	and no additional car poses. It does, howev dent on the composit O) in the metal is an in	bon requirem er, lead to pro ion of the DRI mportant facto	ent in the EAF. cess CO2 emise , HBI, and/or sc or in determinin	Coal here is us sions (included rap that is inpung the amount	ed as a material above). ut to the EAF. Th and characteris	(to provide th his ranges from tics of the slag	e necessary ca about 5% to 1	rbon content	to the steel) in	the EAF, and BI input. The
EFERENCES AND SOURCES Keys, M. van Hout, and B. Daniëls ndustry_3723.pdf.	lower need for DRI in the EAF, not combusted for energy pur Slag formation is highly depen content of gangue oxides (Mg	and no additional car poses. It does, howev dent on the composit O) in the metal is an in or the Dutch Steel Ind	bon requirem er, lead to pro ion of the DRI mportant facto ustry," MIDDE	ent in the EAF. ocess CO2 emise , HBI, and/or so or in determinin N report, https	Coal here is us sions (included rap that is inpung the amount ://www.pbl.nl,	ed as a material above). ut to the EAF. Th and characteris	(to provide th his ranges from tics of the slag	e necessary ca about 5% to 1	rbon content	to the steel) in	the EAF, and BI input. The
EFERENCES AND SOURCES A. Keys, M. van Hout, and B. Daniëls Industry_3723.pdf. Yogl, V., et al. (2018), "Assessment o	lower need for DRI in the EAF, not combusted for energy pur Slag formation is highly depen content of gangue oxides (Mg	and no additional car poses. It does, howev dent on the composit O) in the metal is an in or the Dutch Steel Ind	bon requirem er, lead to pro ion of the DRI mportant facto ustry," MIDDE	ent in the EAF. ocess CO2 emise , HBI, and/or so or in determinin N report, https	Coal here is us sions (included rap that is inpung the amount ://www.pbl.nl,	ed as a material above). ut to the EAF. Th and characteris	(to provide th his ranges from tics of the slag	e necessary ca about 5% to 1	rbon content	to the steel) in	the EAF, and BI input. The
REFERENCES AND SOURCES A. Keys, M. van Hout, and B. Daniëls ndustry_3723.pdf. /ogl, V., et al. (2018), "Assessment of IYBRIT (2019), "HYBRIT - towards fo	lower need for DRI in the EAF, not combusted for energy pur Slag formation is highly depen content of gangue oxides (Mg (2019), "Decarbonisation Options for of hydrogen direct reduction for foss	and no additional car poses. It does, howev dent on the composit O) in the metal is an in or the Dutch Steel Ind il-free steelmaking," J evelopment.com/.	bon requirem er, lead to pro ion of the DRI mportant facto ustry," MIDDE	ent in the EAF. ocess CO2 emise , HBI, and/or so or in determinin N report, https ner Production	Coal here is us sions (included rap that is inpung the amount ://www.pbl.nl, , pp 736-748.	ed as a material above). ut to the EAF. Th and characteris /sites/default/fi	(to provide th his ranges from tics of the slag	about 5% to 1	rbon content	to the steel) in	the EAF, and BI input. The
EFERENCES AND SOURCES A. Keys, M. van Hout, and B. Daniëls ndustry_3723.pdf. Yogl, V., et al. (2018), "Assessment of YBRIT (2019), "HYBRIT - towards fo Polci, F. (2018), "Green hydrogen op furopean Commission (2016), "Iron	lower need for DRI in the EAF, not combusted for energy pur Slag formation is highly depen content of gangue oxides (Mg (2019), "Decarbonisation Options for of hydrogen direct reduction for fose pssil-free steel", http://www.hybritd	and no additional car poses. It does, howev dent on the composit O) in the metal is an in or the Dutch Steel Ind il-free steelmaking," J evelopment.com/. ocesses", https://publi	bon requirem er, lead to pro ion of the DRI mportant facto ustry," MIDDE lournal of Clea	ent in the EAF. cess CO2 emise , HBI, and/or so or in determinin N report, https ner Production europa.eu/rep	Coal here is us sions (included rap that is inpung the amount ://www.pbl.nl, , pp 736-748.	ed as a material above). ut to the EAF. Th and characteris /sites/default/fi am/JRC114766/	kjna29637enn	e necessary ca about 5% to 1 /pbl-2019-deca pdf.	rbon content .9% of the mas arbonisation-o	to the steel) in ss of the DRI/H ptions-for-the	the EAF, and BI input. The -dutch-steel-
EFERENCES AND SOURCES Keys, M. van Hout, and B. Daniëls ndustry_3723.pdf. Yogl, V., et al. (2018), "Assessment of YBRIT (2019), "HYBRIT - towards for Polci, F. (2018), "Green hydrogen op uropean Commission (2016), "Iron 1aa75ed71a1.	lower need for DRI in the EAF, not combusted for energy pur Slag formation is highly depen content of gangue oxides (Mg (2019), "Decarbonisation Options for of hydrogen direct reduction for foss ssil-free steel", http://www.hybritd oportunities in selected industrial pr	and no additional car poses. It does, howev dent on the composit O) in the metal is an in or the Dutch Steel Ind il-free steelmaking," J evelopment.com/. ocesses", https://publiction of its oxide for h	bon requirem er, lead to pro ion of the DRI mportant facto ustry," MIDDE ournal of Clea ications.jrc.ec. igh CO2 mitig	ent in the EAF. cess CO2 emise , HBI, and/or so or in determinin N report, https ner Production europa.eu/rep ation" (IERO), h	Coal here is us sions (included rap that is inpu- ng the amount ://www.pbl.nl, , pp 736-748. ository/bitstreat ttps://publicat	ed as a material above). ut to the EAF. Th and characteris /sites/default/fi am/JRC114766/ tions.europa.eu,	kjna29637enn	e necessary ca about 5% to 1 /pbl-2019-deca pdf.	rbon content .9% of the mas arbonisation-o	to the steel) in ss of the DRI/H ptions-for-the	the EAF, and BI input. The -dutch-steel-
REFERENCES AND SOURCES A. Keys, M. van Hout, and B. Daniëls ndustry_3723.pdf. Yogl, V., et al. (2018), "Assessment of YBRIT (2019), "HYBRIT - towards fo Dolci, F. (2018), "Green hydrogen op Suropean Commission (2016), "Iron Daa75ed71a1. Tischedick, M. et al (2014), "Techno	lower need for DRI in the EAF, not combusted for energy pur Slag formation is highly depen content of gangue oxides (Mg 5 (2019), "Decarbonisation Options for of hydrogen direct reduction for foss ssil-free steel", http://www.hybritd oportunities in selected industrial pr production by electrochemical redu	and no additional car poses. It does, howev dent on the composit O) in the metal is an in or the Dutch Steel Ind il-free steelmaking," J evelopment.com/. ocesses", https://publiction of its oxide for h	bon requirem er, lead to pro ion of the DRI mportant facto ustry," MIDDE lournal of Clea ications.jrc.ec. igh CO2 mitig nologies," Jour	ent in the EAF. ocess CO2 emiss , HBI, and/or sc or in determinin N report, https ner Production europa.eu/rep ation" (IERO), h	Coal here is us sions (included rap that is inpu- ng the amount ://www.pbl.nl, , pp 736-748. ository/bitstrea ttps://publicat	ed as a material above). ut to the EAF. Th and characteris /sites/default/fi am/JRC114766/ tions.europa.eu, 5563-580.	kjna29637enn	e necessary ca about 5% to 1 /pbl-2019-deca pdf. n-detail/-/publ	rbon content .9% of the mas arbonisation-o ication/4255co	to the steel) in ss of the DRI/H ptions-for-the	the EAF, and BI input. The -dutch-steel-