TECHNOLOGY FACTSHEET

SMALL SCALE ALKALINE	-ELECTROLYSIS H2 INS	FALLATIO	N								
Date of factsheet	30-10-2018										
Author	Marc Marsidi										
Sector	Transport										
ETS / Non-ETS	Non-ETS										
Type of Technology	Electrolysis										
Description	Alkaline-electrolysis (AEL) is a known and developed technology used for production of hydrogen from water and is currently the main route used to produce electrolytic hydrogen. It is considered more developed than competing electrolysis technology Proton Exchange Membrane (PEM) (Weeda, 2018).										
	Electrodes in AEL are made of nickel or of porous metal structures (NOW 2018). Hydrogen ions move towards the cathode and hydroxide ions move towards the anode. A diaphragm is used to separate the two electrode compartments. Gas receivers are then used to collect the formed hydrogen and oxygen gases. To ensure good conductivity the used electrolyte should consist of high-mobility ions. Potassium hydroxide (KOH) is normally preferred over sodium hydroxide (NaOH) because of higher conductivity (Santos, Sequeira, & Figueiredo, 2013).										
	Cathodic reaction: 2 H2O + 2e- => H2 + 2 OH-										
	Charge carrier: OH-										
	Anodic reaction: 2OH- => 0.5 O2 + H2O + 2e-										
	AEL operates at a temperature of around 60-70 degrees C (Weeda, 2018) and can produce hydrogen at a pressure of 30 bar (De Vita, et al., 2018), although installations that operate at atmospheric pressure also exist (ECN, 2018) This is expected to increase to 40 bar by 2030 and 70 bar by 2050 (NOW, 2018).										
	Alkaline Electrolysis Cells have a limited ability to respond to load changes, which is essential when flexibility is required by the power system. The current start-up time is around 50 minutes (NOW, 2018).										
	The electrolysis takes place in cells, which can be stacked (called a 'stack'). An installation can consist of multiple stacks.										
TRL level 2020	TRL 9										
	Alkaline electrolysers are commerci	ally available (l	De Vita, et al., 2	2018).							
	Functional Unit		1				Value and Ran	ge			
Capacity	MWH2;out;LHV						3	5-			
				0			-			3	
Potential	NL	MW		Current			2030			2050	
			Min	-	Max	Min	-	Max	Min	-	Max
Market share		%	-	-	-	Min	-	Мах	Min	-	Max
Capacity utlization factor									0.97		
Full-load running hours per year								8,	,497.00		
Unit of Activity	PJ/year									().03
Progress ratio	20-40								0.82		
Hourly profile	No										
Explanation	According to (ECN, 2018) a typical small scale electrolyser installation, as offered by suppliers, is 5 MW, although smaller installations of around 300-500 kW are also found in literature (Hydrogenics, Colruyt, Sustesco, & WaterstofNet, 2016).										
	Typical stacks sizes reported by (ECN, 2018) for small scale installations are 0.5 to 2.25 MW.										
	There appears to be no dedicated AEL installations in the Netherlands at the moment (2018), although chlo-alkali electrolysers are used by Akzo Nobel (salt and chemicals) and Sabic (in										
	Bergen op Zoom). An AEL installation can run 97% of the time (8497 hours per year) and is to be used to its fullest capacity (no hourly profile) according to (Hydrogenics, Colruyt, Sustesco, &										
	WaterstofNet, 2016). This profile would change when connected to an intermittent source of electricity (for example, an offshore wind park). The total installation has a technical lifetime (including maintenance) of 20-40 years (ECN, 2018).										
	The cells and stacks have a lifetime of 9 to 15 years according to (Fraunhofer, 2014). The lifetime of the stacks is expected to increase according to (NOW, 2018) from the current 60,000 hours to 80,000 hours by 2030 and 110,000 by 2050.										
	Until 2030, the main evolutions expected for the alkaline technology are an increased size of the cell stack (from 1000 cm ² to 2500 cm ²) and an increased output pressure (from 10 to 50 bars) (Hydrogenics, Colrupt, Sustance, & WaterstofNet, 2016).										
	AEL electrolysis is still developing and its investment cost are expected to decrease over time. (Detz, Reek, & van der Zwaan, 2018) estimates a learning rate of 18%.										
COSTS											
Year of Euro	2015										
	Euro per Functional U	Current			2030			2050			
Investment costs	mln. € / MWH2;out;LHV		0.9	1.82	3.3	0.4	1.38	2.0	0.4	1.26	1.3
Other costs per year	mln. € / MWH2;out;LHV		Min		Мах	Min		Мах	Min	-	Max
excl. fuel costs)	min. ŧ/ www.2;out;LHV		0.0	0.13	0.1	0.0	0.11	0.1	0.0	0.09 -	0.1
Variable costs per year	mIn. € / MWH2;out;LHV		Min	-	Мах	Min	-	Мах	Min	-	Max

	(De Vita, et al., 2018) estimates a 1,650 EUR/kW_outputH2 (1,177 EUR/kWinput), that will drop sharply to 380 EUR/kW_outputH2 (271 EUR/kWinput) in 2030 and will ultimately go down to 300 EUR/kW_outputH2 (214 EUR/kW/input) (Hydrogenics, Colruyt, Sustesco, & WaterstofNet, 2016) assumes 2,000 EUR/kW_input_elec, which goes down to 1,200 EUR/kW_input_elec by 2030 and 660 EUR/kW_input_elec by 2050 (note that the size of the installation also increases to 1,500 MW). According to (De Vita, et al., 2018) the fixed OPEX cost are 41 EUR/kWoutput/yr, this is expected to go down to 17 EUR/kWoutput/yr in 2030, and to 15 EUR/kWoutput/yr in 2050. Assuming a conversion efficiency of 71.35% of electricity to hydrogen (HHV), the current OPEX cost are 29 EUR/kWinput/yr and goes down to 12 EUR/kWinput/yr in 2030 and 11 EUR/kWinput/yr in 2050.											
	The CAPEX of (Hydrogenics, Colruyt, Sustesco, & WaterstofNet, 2016) (2,000 EUR/kW_input_elec, is for a hydrogen refuelling station for cars, 500 kW in size, with a compressor for 900 bar. Also described is a limited storage for the output of half a day of electrolyser full load operation, being approximately 100 kg. The civil works cost are 100.000 €, and connection cost to the public power grid is 50.000 € (limited, low voltage connection). According to (Hydrogenics, Colruyt, Sustesco, & WaterstofNet, 2016) the OPEX for a small scale AEL installation is currently 80 EUR/kW/year, and is expected to go down to 64 EUR/kW/year in 2030 and 56 EUR/kW/year in 2050.											
Costs explanation	(NOW, 2018) (does not differentiate in CAPEX for large scale and small scale installations) assumes a current CAPEX of 620 – 1,220 EUR/kWel, which is expected to go down to 410 – 970 EUR/kWel by 2030, and 250 – 750 EUR/kWel by 2050.											
	A major component of AEL equipment is the cell stack (about 30% of the total equipment cost) (Hydrogenics, Colruyt, Sustesco, & WaterstofNet, 2016), which need to be replaced once during the the total installation's lifetime.											
	Used factors to convert the CAPE Energy content hydrogen HHV of Energy content hydrogen LHV of Density H2 at STP 0.0899 kg/m3 (X and OPEX found 12.7 MJ/m3 (sour 10.8 MJ/m3 (sour source: https://er	l in the literatu rce: Bossel, Ulf ce: RVO (2018) ncyclopedia.air	re to the values & Eliasson, Balo The Netherlan liquide.com/)	above: dur (2003) Ene ds list of fuels)	rgy and The Hy	ydrogen Econon	ηy)				
ENERGY IN- AND OUTPUTS												
	Energy carrier	Unit		Current			2030		2050			
Energy carriers (per unit of main output)	Main output:	РJ		-1.00			-1.00			-1.00		
	electricity	PJ	-1	- 1.55	-1	-1	1.50	-1	-1	1.47	-1	
		PJ	Min		Z Max	Min	-	Max	Min	-	Мах	
		PJ	Min	-	Мах	Min	-	Мах	Min	-	Мах	
	The energy efficiency of the AEL s	system is defined	by the amount	of kg H2 can be	e produced per	r electricity inp	out (kWh).			4		
Energy in- and Outputs explanation	According to (Weeda, 2018) and kg/m3 LHV, or 72% based on HH' According to (NOW, 2018) the cu will be 4.4 kWh/m3_H2. Assumir , and to 48.9 kWh/kg_H2 by 2050	V). The energy eff rrent energy cons ng a density of 0.0	umption for a 3 899 kg/m3 this	ceed 85% (HHV LO MW AEL inst translates to a	based) in the allation is curr	ently (2018) ar y consumption	round 4.6 kWh/ n of 52.3 kWh/k	m3_H2, by 203 g_H2. This is ex	to it will be 4.5	kWh/m3_H2 a er to 50.1 kWh	and by 2050 it /kg_H2 by 2030	
MATERIAL FLOWS (OPTIONAL)												
	Material	Unit		Current			2030			2050		
Material flows		kg H2	-1.0	-1.00	-1.0	-1.0	-1.00	-1.0	-1.0	-1.00	-1.0	
				11 50			11 50			11 50		
		kg water	14.5	14.50 -	14.5	14.5	14.50 -	14.5	14.5	14.50 -	14.5	
Material flows explanation	According to (Hydrogenics, Colrug	kg water yt, Sustesco, & Wa	14.5 aterstofNet, 20	14.50 – 16), around 1.3	14.5 liter/Nm3_H2	14.5 2 is required (14	14.50 – 4.5 kg_water/kg	14.5 g_H2)	14.5	14.50 –	14.5	
Material flows explanation EMISSIONS (Non-fuel/energy-related er	According to (Hydrogenics, Colrug nissions or emissions reductions Substance	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20	14.50 – 16), around 1.3 Current	14.5 liter/Nm3_H2	14.5 2 is required (14	14.50 – 4.5 kg_water/kg 2030	14.5 g_H2)	14.5	14.50 – 2050	14.5	
Material flows explanation EMISSIONS (Non-fuel/energy-related er	According to (Hydrogenics, Colrug nissions or emissions reductions Substance	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20	14.50 – 16), around 1.3 Current	14.5 liter/Nm3_H2	14.5 2 is required (14	14.50 – 4.5 kg_water/kg 2030 –	14.5 g_H2)	14.5	14.50 - 2050	14.5	
Material flows explanation EMISSIONS (Non-fuel/energy-related er	According to (Hydrogenics, Colruy nissions or emissions reductions Substance	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min	14.50 – 16), around 1.3 Current – – –	14.5 liter/Nm3_H2 Max	14.5 2 is required (14 Min	14.50 - 4.5 kg_water/kg 2030 - - - -	14.5 g_H2) Max	14.5	14.50 - 2050 - - -	14.5 Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions	According to (Hydrogenics, Colrug nissions or emissions reductions Substance	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min	14.50 – 16), around 1.3 Current – – – – – – – –	14.5 liter/Nm3_H2 Max Max	14.5 Pris required (14 Min Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - -	14.5 g_H2) Max Max	14.5 Min Min	14.50 - 2050 - - - - - - -	14.5 Max Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions	According to (Hydrogenics, Colrus nissions or emissions reductions Substance	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min Min	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2	14.5 Pris required (14 Min Min Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 g_H2) Max Max	14.5	14.50 - 2050 - - - - - - - - - - -	14.5 Max Max Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions	According to (Hydrogenics, Colrus nissions or emissions reductions Substance	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min Min Min	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2	14.5 is required (14 Min Min Min Min Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 g_H2) Max Max Max	14.5 Min Min Min Min Min	14.50 - 2050 - - - - - - - - - - -	14.5 Max Max Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER	According to (Hydrogenics, Colrus nissions or emissions reductions Substance	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min Min Min	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2	14.5 is required (14 Min Min Min Min Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 g_H2) Max Max Max	14.5	14.50 - 2050 - - - - - - - - - - -	14.5 Max Max Max Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions Emissions explanation OTHER Parameter	According to (Hydrogenics, Colruy nissions or emissions reductions Substance	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min Min Min	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2 Max Max Max	14.5 is required (14 Min Min Min Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - 2030	14.5 g_H2) Max Max Max	14.5 Min Min Min Min	14.50 - 2050 - - - - - - - - - - - - 2050	14.5 Max Max Max Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions Emissions explanation OTHER Parameter	According to (Hydrogenics, Colrus	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min Min Min Min	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2	14.5 2 is required (14) Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 g_H2) Max Max Max Max	14.5	14.50 - 2050 - - - - - - - - - - - - - - - - - -	14.5 Max Max Max Max Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter	According to (Hydrogenics, Colrus	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min Min Min Min Min	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2	14.5 2 is required (14) Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 g_H2) Max Max Max Max Max	14.5	14.50 - 2050 - - - - - - - - - - - - - - - - - -	14.5 Max Max Max Max Max Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions Emissions explanation OTHER Parameter	According to (Hydrogenics, Colrus	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min Min Min Min Min Min Min Min	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2	14.5 is required (14) Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 g_H2) Max Max Max Max Max Max	14.5 <i>Min</i> <i>Min</i> <i>Min</i> <i>Min</i> <i>Min</i> <i>Min</i> <i>Min</i> <i>Min</i> <i>Min</i>	14.50 - 2050 - - - - - - - - - - - - - - - - - -	14.5 Max Max Max Max Max Max Max Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter	According to (Hydrogenics, Colrus	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min Min Min Min Min Min Min Min Min	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2	14.5 is required (14) Min Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 g_H2) Max Max Max Max Max Max Max	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5	14.50 - 2050 - - - - - - - - - - - - - - - - - -	14.5 Max Max Max Max Max Max Max Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Explanation Explanation	According to (Hydrogenics, Colrus	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min Min Min Min Min Min Min Min Min	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2	14.5 is required (14) Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 g_H2) Max Max Max Max Max Max Max	14.5	14.50 - 2050 - - - - - - - - - - - - - - - - - -	14.5 Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Explanation Explanation REFERENCES AND SOURCES	According to (Hydrogenics, Colrust nissions or emissions reductions) Substance	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min Min Min Min Min Min Mi	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2 Max Max	14.5 is required (14) Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 3_H2) Max Max Max Max Max Max Max	14.5	14.50 - 2050 - - - - - - - - - - - - - - - - - -	14.5 Max Max Max Max Max Max Max Max Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Explanation Explanation Explanation REFERENCES AND SOURCES Weeda (2018). Routekaart Waterstof TKI	According to (Hydrogenics, Colrus	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min Min Min Min Min Min Min Min Min	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2	14.5 is required (14) Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 g_H2) Max Max Max Max Max Max Max	14.5	14.50 - 2050 - - - - - - - - - - - - - - - - - -	14.5 Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Explanation Explanation Explanation REFERENCES AND SOURCES Weeda (2018). Routekaart Waterstof TKI NOW (2018). Industrialisierung der Wass De Vita et al. (2018). Sectoral integration	According to (Hydrogenics, Colrus	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2	14.5 is required (14) Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 g_H2) Max Max Max Max Max Max Max	14.5	14.50 - 2050 - - - - - - - - - - - - - - - - - -	14.5 Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Explanation REFERENCES AND SOURCES Weeda (2018). Routekaart Waterstof TKI NOW (2018). Industrialisierung der Wass De Vita et al. (2018). Sectoral integration Hydrogenics et al. (2016). Power to Gas DNVGL (2017) report vorkenning under	According to (Hydrogenics, Colrust nissions or emissions reductions Substance Unit Unit Unit Nieuw Gas erelektrolyse in Deutschland - long term perspective	kg water yt, Sustesco, & Wa (e.g. CCS) Unit	14.5 aterstofNet, 20 Min Min Min Min Min Min Min Min Min Mi	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2	14.5 is required (14) Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 g_H2) Max Max Max Max Max Max Max	14.5	14.50 - 2050 - - - - - - - - - - - - - - - - - -	14.5 Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Explanation Explanation REFERENCES AND SOURCES Weeda (2018). Routekaart Waterstof TKI NOW (2018). Industrialisierung der Wass De Vita et al. (2016). Power to Gas DNVGL (2017). rapport verkenning water E4tech et al. (2014). Development of water E4tech et al	According to (Hydrogenics, Colrust nissions or emissions reductions of Substance Unit Unit Nieuw Gas erelektrolyse in Deutschland - long term perspective stofinfrastructuur er electrolysis in the European Unit	kg water yt, Sustesco, & Wa (e.g. CCS) Unit Unit	14.5 aterstofNet, 20 Min Min Min Min Min Min Min Min Min Mi	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2	14.5 Is required (14) Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 g_H2) Max Max Max Max Max Max Max	14.5	14.50 - 2050	14.5 Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Explanation Explanation REFERENCES AND SOURCES Weeda (2018). Routekaart Waterstof TKI NOW (2018). Industrialisierung der Wass De Vita et al. (2018). Sectoral integration Hydrogenics et al. (2016). Power to Gas DNVGL (2017). rapport verkenning water E4tech et al. (2014). Development of wat Detz, R.J., Reek, J.N., & van der Zwaan, B	According to (Hydrogenics, Colrumnissions or emissions reductions of Substance Substance Unit Unit Nieuw Gas erelektrolyse in Deutschland - long term perspective Stofinfrastructuur er electrolysis in the European Un .C. (2018). The future of solar fuels	kg water yt, Sustesco, & Wa (e.g. CCS) Unit Unit	14.5 aterstofNet, 20 Min Min Min Min Min Min Min Mi	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2 Max	14.5 Is required (14) Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 3_H2) Max Max Max Max Max Max Max	14.5	14.50 - 2050 - - - - - - - - - - - - - - - - - -	14.5 Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Explanation Explanation REFERENCES AND SOURCES Weeda (2018). Routekaart Waterstof TKI NOW (2018). Industrialisierung der Wass De Vita et al. (2018). Sectoral integration Hydrogenics et al. (2016). Power to Gas DNVGL (2017). rapport verkenning water E4tech et al. (2014). Development of wat Detz, R.J., Reek, J.N., & van der Zwaan, B Pesonen, O. & Alakunnas, T. (2017). Ener	According to (Hydrogenics, Colrumnissions or emissions reductions of Substance Substance Unit Unit Nieuw Gas erelektrolyse in Deutschland I long term perspective Stofinfrastructuur Ser electrolysis in the European Un C. (2018). The future of solar fuels gy storage.	kg water yt, Sustesco, & Wa (e.g. CCS) Unit Unit	14.5 aterstofNet, 20 Min Min Min Min Min Min Min Min Min Min	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2 Max	14.5 is required (14) Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 3_H2) Max Max Max Max Max Max Max	14.5	14.50 - 2050 - - - - - - - - - - - - - - - - - -	14.5 Max Max	
Material flows explanation EMISSIONS (Non-fuel/energy-related er Emissions Emissions explanation OTHER Parameter Explanation REFERENCES AND SOURCES Weeda (2018). Routekaart Waterstof TKI NOW (2018). Industrialisierung der Wass De Vita et al. (2018). Sectoral integration Hydrogenics et al. (2016). Power to Gas DNVGL (2017). rapport verkenning water E4tech et al. (2014). Development of wat Detz, R.J., Reek, J.N., & van der Zwaan, B Pesonen, O. & Alakunnas, T. (2017). Ener Berenschot (2017). Electrification in the I	According to (Hydrogenics, Colrumnissions or emissions reductions in Substance Substance Unit Unit Unit Nieuw Gas erelektrolyse in Deutschland - long term perspective stofinfrastructuur cer electrolysis in the European Uni C. (2018). The future of solar fuels gy storage. Dutch process industry	kg water yt, Sustesco, & Wa (e.g. CCS) Unit Unit	14.5 aterstofNet, 20 Min Min Min Min Min Min Min Min Min	14.50 - 16), around 1.3 Current - - - - - - - - - - - - -	14.5 liter/Nm3_H2 Max	14.5 is required (14) Min	14.50 - 4.5 kg_water/kg 2030 - - - - - - - - - - - - -	14.5 	14.5	14.50 - 2050 - - - - - - - - - - - - - - - - - -	14.5 Max Max Max Max Max Max Max Max Max	