TECHNOLOGY FACTSHEET

LARGE-SCALE ALKALIN	NE-ELECTROLYSIS HYDRO	GEN INST	FALLATIO	N										
Date of factsheet	13-12-2018													
Author	Marc Marsidi													
Sector	Hydrogen	Hydrogen												
ETS / Non-ETS														
Type of Technology	Electrolysis													
Description	Alkaline-electrolysis (AEL) is a known and developed technology used for production of hydrogen from water and is currently the main route used to produce electroly hydrogen. It is considered more developed than competing electrolysis technology Proton Exchange Membrane (PEM) (Weeda, 2018). Electrodes in AEL are made of nickel or of porous metal structures (NOW 2018). Hydrogen ions move towards the cathode and hydroxide ions move towards the anode										/tic e. A			
	diaphragm is used to separate the two used electrolyte should consist of hi Sequeira, & Figueiredo, 2013). Cathodic reaction: 2 H2O + 2e- =>	diaphragm is used to separate the two electrode compartments. Gas receivers are then used to collect the formed hydrogen and oxygen gases. To ensure good conductivity the used electrolyte should consist of high-mobility ions. Potassium hydroxide (KOH) is normally preferred over sodium hydroxide (NaOH) because of higher conductivity (Santos, Sequeira, & Figueiredo, 2013).												
	Charge carrier: OH-													
	Anodic reaction: 20H- => 0.5 O2 + H2O + 2e-													
	AEL operates at a temperature of ar operate at atmospheric pressure als	AEL operates at a temperature of around 60-70 degrees C (Weeda, 2018) and can produce hydrogen at a pressure of 30 bar (De Vita, et al., 2018), although installations that operate at atmospheric pressure also exist (ECN, 2018). This is expected to increase to 40 bar by 2030 and 70 bar by 2050 (NOW, 2018).												
	Alkaline Electrolysis Cells have a limited ability to respond to load changes, which is essential when flexibility is required by the power system. The current start-up time is around 50 minutes (NOW, 2018).													
	The electrolysis takes place in cells,	which can be s	tacked (called a	ı 'stack'). An in	stallation can co	nsist of multip	ole stacks.							
	Functional Unit	Functional Unit			Value and Range									
Capacity Potential	MWH2;out;LHV	13.06												
				13.06			-			242.69				
	NL	PJ		Current			2030			2050				
			Min	-	Мах	Min	-	Мах	Min		Мах			
Market share		%	-	-	-	Min	-	Max	Min		Max			
Capacity utlization factor										0.97				
Full-load running hours per year									8	3,497				
Unit of Activity	PJ/year								0.03					
Technical lifetime (years)		20-40												
Progress ratio									0.82					
Hourly profile	No													
Explanation	An AEL installation stack for hydroge going up to 150 MW (Korner, 2015) AEL electrolysis produces hydrogen produced hydrogen can also directly	An AEL installation stack for hydrogen production varies in size from 1 to 5 MW (Weeda, 2018). These units can be linked to form larger production plants. Installations can vary going up to 150 MW (Korner, 2015) or even 400 MW (IEA, 2017), but based on (ECN, 2018) a typical large scale electrolyser installation is defined here as 20 MW. AEL electrolysis produces hydrogen for which there are many different applications: to produce steam, electricity, high temperature heat, and to act as transport fuel. The produced hydrogen can also directly replace current hydrogen consumption mostly produced via steam methane reforming (SMR) or hydrogen in refinery waste gases separated												
	using pressure swing adsorption (PSA). Branches that have shown interest in (sustainable) hydrogen production are the chemical, the petrochemical and the fertilizer sector (Berenschot, Matters, Delft, & Matters, 2017).													
	An AEL installation can run 97% of the time (8497 hours per year) and is to be used to its fullest capacity (no hourly profile) according to (Hydrogenics, Colruyt, Sustesco, & WaterstofNet, 2016). This profile would change when connected to an intermittent source of electricity (for example, an offshore wind park).													
	The total installation has a technical lifetime (including maintenance) of 20-40 years (ECN, 2018). The stacks have a lifetime of 9 to 15 years according to (Fraunhofer, 2014). The lifetime of the stacks is expected to increase according to (NOW, 2018) from the current 60,000 hours to 80,000 hours by 2030 and 110,000 by 2050.													
	(from 10 to 60 bars) (Hydrogenics, Colruyt, Sustesco, & WaterstofNet, 2016).													
	AEL electrolysis is still developing ar	nd its investme	nt cost are expe	ected to decrea	ase over time. (C	Detz, Reek, & v	an der Zwaan,	2018) estimate	s a learning ra	te of 18%.				
COSTS														
Year of Euro	2015													
	Euro per Functional Ur	nit		Current			2030			2050				
Investment costs	mln. € / MWH2;out;LHV			1.02			0.70			0.70				
Other costs per year	mln € / MWH2:out:LHV		0.94	-	1.84	0.61	-	1.43	0.36	-	1.08			
			Min	-	Мах	Min	-	Max	Min	-	Max			
Fixed operational costs per year	mln. € / MWH2;out;LHV		0.02	0.03	0.02	0.02	0.02	0.00	0.04	0.01	0.01			
	mln. € / MWH2:out:LHV		0.03		0.03	0.02	-	0.02	0.01	-	0.01			
Variable costs per year			Min	-	Мах	Min	_	Мах	Min	_	Max			

	(NOW, 2018) (does not differentiate in CAPEX for large scale and small scale installations) assumes a current CAPEX of 620 – 1,220 EUR/kWel, which is expected to go											
	to 410 – 970 EUR/kWel by 2030, and 250 – 750 EUR/kWel by 2050. (EUR/kW;H2;Ihv is calculated by multiplying with energy efficiency PJel/PJh2;Ihv)											
	Internal data from ECN estimates 665 - 945 EUR/kWel for current AEL CAPEX, going to down to 460 - 750 EUR/kWel by 2030, and 460 - 660 EUR/kWel (EUR/kW;H2;Ihv is calculated by multiplying with energy efficiency PJel/PJh2;Ihv of 1.53)											
	According to (Do Vita, et al., 2018) the ODEV of a large coale AEL installation is surrently 29 ELIP //AV/b2/bbs///mand will an device to 14. ELIP //AV/b2/bbs///will and will an device to 14. ELIP //AV/b2/bbs///mand will an device to 14. ELIP //AV/b2/bbs///mand will an device to 14. ELIP											
	According to (De Vita, et al., 2018) the OPEX of a large scale AEL installation is currently 28 EUR/kWh2;hhv/yr and will go down to 14 EUR/kW;h2;hhv/yr by 2030 and 9 EUR/kW;h2;hhv/yr by 2050. Assuming 71.35% conversion efficiency of electricity to hydrogen (HHV), the OPEX is 20 EUR/kWinput/yr and goes down to 10 EUR/kWinput/yr in 2030 and 6 EUR/kWinput/yr in 2050. OPEX expressed in lhv H2 calculated using 1.18 MJh2;hhv/MJh2;lhv.											
Costs explanation	A major component of AEL equipment is the stack (about 30% of the total equipment cost) (Hydrogenics, Colruyt, Sustesco, & WaterstofNet, 2016), which need to be replaced once during the the total installation's lifetime.											
	Used factors to convert the CAPEX and OPEX found in the literature to the values above:											
	Energy content hydrogen HHV of 12.7 MJ/m3 (source: Bossel, Ulf & Eliasson, Baldur (2003) Energy and The Hydrogen Economy) Energy content hydrogen LHV of 10.8 MJ/m3 (source: RVO (2018) The Netherlands list of fuels)											
	Density H2 at STP 0.0899 kg/m3 (source: https://encyclopedia.airliquide.com/)											
ENERGY IN- AND OUTPUTS												
	Energy carrier	Unit		Current			2030			2050		
	Main output:	PJ	1.00	-1.00	1.00	1.00	-1.00	1.00	1.00	-1.00	1.00	
	Hyarogen		-1.00	- 1 53	-1.00	-1.00	- 1 50	-1.00	-1.00	1 47	-1.00	
Energy carriers (per unit of main output)	Electricity	PJ	1.53	-	1.67	1.50	-	1.50	1.47	-	1.47	
		PJ	Min	-	Мах	Min	-	Мах	Min		Max	
		РJ	. <i>a</i> :	-		A. 41	-		A 6'	-		
	AEL requires electricity as energy i	nput and results	Min in hydrogen (H	– 2) as energy o	Max utput.	Min	-	Мах	Min	-	Max	
Energy in- and Outputs explanation	According to (NOW, 2018) the current energy consumption for a 10 MW AEL installation is currently (2018) around 4.6 kWh/m3_H2, by 2030 it will be 4.5 kWh/m3_H2 and by 2050 it will be 4.4 kWh/m3_H2. Assuming a density of 0.0899 kg/m3 this translates to a current energy consumption of 52.3 kWh/kg_H2. This is expected to go down to 50.1 kWh/kg_H2 by 2030, and to 48.9 kWh/kg_H2 by 2050. Internal data from (ECN, 2018) gives a range of 51.1 to 55.6 kWhel;input per kgH2;output. (Weeda, 2018) uses 55 kWh;el per kgH2;output as efficiency for AEL. To convert kWh/kgH2 use 120.1 MJ;lhv/kg H2 as energy content. Example, the PJel;in/PJh2;lhv;out for Weeda (2018) is 55*3.6/120.1 = 1.65.											
MATERIAL FLOWS (OF HONAL)	Material Unit		Current			2030			2050			
Material flows	Hydrogen	ka H2		-1.00			-			-		
	Water	kg water	-1.00	- 14.50	-1.00	Min	-	Мах	Min	-	Мах	
	According to (Undrogonics, Colema		14.50	-	14.50	Min		Max	Min	-	Max	
Material flows explanation	According to (Hydrogenics, condy		aterstonnet, 201	10), al Oullu 1.5		. 15 Tequileu (14	.5 kg_water/k	(g_112)				
EMISSIONS (Non-fuel/energy-related en	Substance Unit		Current			2030			2050			
			Min	-	Max	Min	-	Мах	Min	-	Max	
Emissions			Min	-	Max	Min	-	Max	Min	-	Max	
				-	IVIGA		-	Max		-	IVIGA	
			Min	-	Max	Min	_	Max	Min	-	Max	
			Min	-	Max	Min	-	Max	Min	-	Max	
Emissions explanation			IVIIII	_	IVIUX	IVIIII	_	IVIUX	IVIIII	_	IVIUX	
OTHER												
Parameter	Parameter Unit		Current			2030			2050			
			Min	-	Max	Min	- -	Мах	Min	-	Max	
			Min	-	Max	Min	-	Мах	Min	-	Max	
			-			-			-			
		Min	-	Max	Min	-	Max	Min	-	Мах		
			Min	_	Max	Min	_	Мах	Min	-	Max	
Explanation												
Weeda (2018). Routekaart Waterstof TKI	Nieuw Gas.											
NOW (2018). Industrialisierung der Wass	erelektrolyse in Deutschland.											
De Vita et al. (2018). Sectoral integration	- long term perspective.											
Hydrogenics et al. (2016). Power to Gas.	rstofinfrastructuur											
E4tech et al. (2014). Development of wat	er electrolysis in the European Unic	on.										
Detz, R.J., Reek, J.N. & van der Zwaan, B.	C. (2018). The future of solar fuels.											
Pesonen, O. & Alakunnas, T. (2017). Ener	gy storage.											
Korner, A. (2015). Technology roadmap h Fraunhofer (2014). Water electrolysis str	iyarogen and tuel cells. atus and potential for development											
Berenschot (2017). Electrification in the I	Dutch process industry.	-										