FACTSHEET ENERGY FROM WATER

															for life	
TECHNOLOGY DESCRIPTION Name technology	Tidal strea	m														
Date factsheet	11-12-202															
Author Description	Kinetic en	Ruud van den Brink and Sam Lamboo Kinetic energy can be obtained from tidal currents by means of free-flow turbines. This can take place at flood defenses as well as on the open sea. Channels with a funneling effect cause an acceleration of the tidal current, so that more kinetic energy can be gained.														
	are less ac market op	dvanced. In a portunities f	ddition to t or free-flow	he open se v turbines.	a, vertical-a The Dutch i	axis turbine industry is v	mature type is are also sui working on a e. This fact sh	itable for us Il three vari	se in rivers ants of free	and kite co e-flow turb	ncepts can ines (MET s	be applied a support, 201	t lower flow 5). As horizo	speeds, wi ntal-axis tu	nich offers	additiona
TRL LEVEL									Sec. 19	11 P.A.N						
TRL	5-8	2020		2030		2050	ADOT O	100	the stand	and the second						
		herlands, tur	bines with	blades that	rotate abc	out a		1 m	X			10/10				
Explanation	commerci technique	axis are curr al scale in the s (such as ve n+Bos & CE [e Oostersch rtical axis a	neldekering nd tidal kite	; (TRL 8). Ot e) have TRL	her										
							Tocardo hor	rizontal-axis	s turbines r	near the Eas	stern Schel	dt storm sur	ge barrier. So	ource: TNO	(2018)	
CURRENT INSTALLED CAPACITY		L ELECTRICIT	Y PRODUC	TION IN TH	E NETHERL	ANDS						- 6		-	·	
Installed capacity Annual installed capacity	1,5 MW 3,75 GWh															
· · ·			tion of 1.2	MW capaci	ty in the O	osterscheld	e (Witteveen	1+Bos & CE	Delft, 2019). The annu	al electrici	ty productio	n is estimate	d on the ba	isis of 250	0 full load
Explanation	hours.															
POSSIBLE LOCATIONS IN THE NE	-			heldekorin	g the Afel	uitdiik thay	Nesterscheld	e the Mad	denzee an	d other offe	hore locat	ons (Mittour	Pen+Bos & C	E Delft 201	9)	
Locations					0,		so potential					•			'	t) How
Explanation	much of th out a large	nis is technica	ally and eco	onomically	viable is no	t entirely cl	lear. The feas	sible potent	ial with the	e Oostersch	eldekering	depends on	0			•
POTENTIAL IN THE NETHERLAND	DS			2030					2050							
		Main	Source 2		Source 4	Source 5	Main	Source 2		Source 4	Source 5					
	Unit	source					source									
Energy potential (technical)	PJ/year	Source	Source	Source	Source	Source	Witteveen+		Source	Source	Source					
Energy potential (economic)	PJ/year	Source	0 Ecofys 202	0.4 1 Ecofys 201		Source	Source	Source	Source	Source	Source	-				
	Linit	Courses	Courses	Courses	Courses	Courses	Courses	Courses	Courses	Courses	Courses					
Vitigation potential	Unit Witteveer	Source	Source elft (2019)	Source estimate te	Source chnical pot	Source	<i>Source</i> d on 100 MV	Source V and 2500	Source full load he	Source	Source V of this is	-				
Explanation	load hours sources. E	s, amounts to	o 1.6-2.7 PJ estimates l	per year (T ousiness as	ocardo, 20 usual mark	20 and Sea (et potentia	e Netherlanc Qurrent, 2020 Il (economic	0), which is	within the	bandwidth	of other					
COSTS		T					1									
		Main	Courses 2	2020	Course 4		Main	Course 2	2030	Course 4		Main	Seuree 2	2050	Course 4	Course F
	Unit	source	Source 2		Source 4		source	Source 2			Source 5	source	Source 2			Source 5
Сарех	€/kW	5100 PBL (2020)		7500 Hoefnage			5900 JRC (2018)		6440 JRC (2018		Source	240 Calculation	<mark>0</mark> 850 (<i>Calculatio</i>			
	c/link/	155					330				C	7	<mark>4</mark> 26			
Fixed Opex	€/KVV/yea	PBL (2020)	ноејпаде	l Hoefnagel	ноејпаде	Source	JRC (2018)	JRC (2018)) JRC (2018	Source	Source	Calculation) (Calculatio	Calculatio	JRC (2018	S) JRC (201
Variable Opex	Unit	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source
Grid connection	Unit	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source
LCOF	E /k/M/b	0.185					0.25 Calculation				Sourco	0.08				
LCOE Explanation							turbines. Th				Source g to SeaQur		rable to the			
	with a diff	erent Capex	and Opex r	atio (SeaQu	urrent, 2020	0).										
					-		dal energy fro ntal-axis free						ht of fall <50) cm togeth	er with, ar	nong othe
		things, wave energy. The costs in this category are based on horizontal-axis free-flow turbines and are therefore included here. Witteveen+Bos & CE Delft (2019) mention the investment costs of the SDE+ 2019 and convert the cost estimate from the SDE+ (€ 0.19/kWh) with an interest rate of 3% to € 0.16/kWh. The high limit from the Witteveen+Bos & CE Delft study (0.37 €/kWh) is based on a study by ECN from 2010.														
	an average Delft (201	Based on industry data and literature, Hoefnagels (2020) has estimated average costs and a bandwidth for horizontal-axis tidal turbines in an array (LCOE of 0.26-1.63 € / kWh, with an average value of 0.65 € / kWh - NB: this cost data is not specific to the Netherlands). The entire bandwidth is higher than the costs of the SDE++ 2020 and Witteveen+Bos & CE Delft (2019). In addition to differences in the assumptions of investment and operational costs, there are large differences in the assumption of full load hours (1200-2400 hours compared to 3700 hours in the SDE++ 2020).														
		IEA-OES (2015) estimate that first commercial projects of 3-90 MW can be realized for a cost of 0.13-0.28 \$/kWh (approx. 0.12-0.25 €/kWh). With 10 GW of cumulative installed capacity, the LCOE is estimated at 0.16 \$ / kWh (approx. 0.14 €/kWh).														
	JRC (2019) estimate the LCOE in 2018 based on the LCOE in 2015 and learning curves (NB: these cost data are also not specific to the Netherlands). They find a (reference) value of 0.40 €/kWh, but indicate that data from industrial parties indicate lower LCOEs (0.34-0.38 €/kWh). These estimates are also higher than the estimate based on the SDE ++ 2020 assumptions. JRC (2018) has calculated the Capex and Opex decline for several scenarios based on learning curves. The baseline, minimum and maximum scenarios for 2030 are included in the fact sheet, the minimum and maximum scenarios for 2050. Based on the Capex and Opex data, LCOEs have been calculated based on the other parameters from the SDE ++ (3700 full load hours, lifespan of 15 years and 5.6% actuarial interest).															

	Based on learning curves, Hoefnagels (2020) has made an estimate of LCOEs in 2050. Due to the relatively high estimate of the LCOE in 2020, this analysis yields a bandwidth (0.2-0								
	€ / kWh) above the current cost price from the SDE++ 2020. The assumptions of the learning curves (worldwide cumulative installed capacity of 0.5 GW, 7.5 GW and 81 GW,								
	decrease of CAPEX and OPEX by 0%, 5%, 10%, and 15% for each doubling of worldwide cumulative installed capacity) have been used with the LCOE based on the SDE++ 2020								
	parameters to arrive at a new estimate of costs in 2050.								
	For reference, the EU SET targets for tidal energy are € 0.15 / kWh in 2025 and € 0.10 / kWh in 2030 (European Commission, 2018).								
ENERGY PROFILE									
Energy profile	Variable but predictable energy profile.								
	The energy profile follows the tide, resulting in a sinusoidal profile with peak production every 6.25 hours. After the peak, the flow rate decreases and reaches 0 when the tide tur								
Explanation	Because the tide is determined by the movement of the earth and the moon, it is a predictable energy source - predictable up to a few years in advance (IRENA, 2014). Due to its								
	predictability, it can also be used as a secondary and tertiary reserve (Tocardo, 2020).								
EXPORT POTENTIAL									
	Worldwide theoretical potential is estimated at 3 TW, of which 1 TW is considered technically recoverable (IRENA, 2014). There may be more technically feasible when applying								
Export potential	techniques that can operate at low flow rates (such as SeaQurrent's TidalKite or the low-flow turbine under development at Tocardo (now TRL 4)) (SeaQurrent, 2020 and Tocardo,								
	2020).								
	IRENA (2014) assumes that a minimum flow velocity of 1.5-2 m/s is required for the application of free-flow turbines. With techniques such as tidal kites that can be used at flow								
Explanation	velocities of 1-1.5 m/s, the potential export market increases.								
POSSIBLE NON-ENERGETIC									
Ecological effects	For small-scale tidal energy projects, research has been conducted into safety for fish and marine mammals such as seals and porpoises. Research by IMARES shows a changed								
	situation for fish near the Afsluitdijk with respect to movements through the sluice and an increase in the risk of death (IMARES, 2015). The Pro-Tide project investigated fish safe								
	for scale models, from which an increase in mortality has been observed for some fish species while eel survives passage through the tidal turbine (ATKB, 2015). Fish can avoid the								
	tidal turbines more easily than with hydropower plants because the turbines do not cover the entire wet surface, which means that the risk of injury or death is estimated to be								
	lower (IMARES, 2015; Jacob van Berkel, 2020; Witteveen+Bos & CE Delft, 2019). No evidence of impact was found for seals and porpoises at the installation near the Oosterscheld								
	International research has also found no negative impact of turbines on seals and porpoises (Copping & Hemery, 2020). Based on research into the Oosterscheldekering, the impact of turbines on seals and porpoises (Copping & Hemery, 2020).								
	on seals and porpoises is estimated to be low, even when more turbines are added to the barrier (Leopold and Scholl, 2019; Seamarco, 2019).								
	For estatuaries where there is sand bar erosion, tidal turbines can exacerbate these effects (Witteveen+Bos & CE Delft, 2019). Based on research for two licensed projects near th								
	Eastern Scheldt (existing installation and a similar project not yet completed), there do not appear to be significant effects on erosion and sedimentation (Leopold and Scholl, 201								
	Deltares has conducted research into the effect of energy extraction from tidal surrents in the Oesterscholdekering on the tides (Deltares, 2018). Measurements from the study								
	Deltares has conducted research into the effect of energy extraction from tidal currents in the Oosterscheldekering on the tides (Deltares, 2018). Measurements from the study								
	show that the tides with turbines appear to fall within a range of natural variations of the tides without turbines. Because the results appear to fall within this bandwidth, the								
	researchers do not draw any definitive conclusions about the impact of the turbines on the tide.								
Multiple use	There may be opportunities for coupling with dams and bridges (Scheijgrond, 2020).								
Social and landscape effects									
Material use/circularity									
	Witteveen (Res & CE Delft (2010), Derenestieven energie uit water: Nationeel natertieel veer 2020 en 2050 (in Dutch)								
1	Witteveen+Bos & CE Delft (2019). Perspectieven energie uit water: Nationaal potentieel voor 2030 en 2050 (in Dutch).								
2	MET-support (2015). Dutch wave and tidal energy sector: Status, challenges, and roadmap. (on assignment of TKI Wind)								
3	JRC (2019). Ocean energy technology development report.								
4	Deltares (2008). Water als bron van duurzame energie. Inspiratieatlas van mogelijkheden (in Dutch).								
5	Ecofys (2017). Overige hernieuwbare energie in Nederland. Een potentieel studie (in Dutch).								
6	Tocardo (2020). Interview 5 June 2020 and written response to draft factsheet (in Dutch).								
7	SeaQurrent (2020). Interview 9 juni 2020 en schriftelijke reactie op concept factsheet (in Dutch).								
8	PBL (2020). Eindadvies basisbedragen SDE++ 2020 (in Dutch).								
9	Hoefnagels (2020). Techno-economic analysis of the cost reduction potential of marine energy technology through learning curve modelling								
10	JRC (2018). Cost development of low carbon energy technologies.								
11	Europese Commissie (2018) - SET-plan Ocean energy implementation plan.								
12	IMARES (2015). Een analyse van effecten van getijturbines op habitat, vis, vogels en zeezoogdieren bij Kornwerderzand (in Dutch).								
13	Jacob van Berkel (2020). Interview 27 May 2020 (in Dutch).								
14	Deltares (2018). Environmental impact of tidal power in the Eastern Scheldt Storm Surge Barrier. Appendix A: Impact on tidal range due to tidal turbine installation								

— -					
15	IRENA (2014). Tidal Energy Technology Brief.				
16	ATKB (2015). Evaluation of fish injury and mortality associated with the T1 Tocardo turbine				
17	Leopold en Scholl (2019). Monitoring getijdenturbines Oosterscheldekering: Jaarrapportage 2018				
18	Seamarco (2019). Position Paper: Effects of the Eastern Scheldt Storm Surge Barrier and tidal energy turbines on harbor purpoise (Phocoena phocoene) and harbor seal (Phoca				
	vitulina) movements.				
19	TNO (2018). Operations and maintenance simulation for tidal turbines.				
20	IEA-OES (2015). Cost of ocean energy technologies.				
21	Scheijgrond, Peter (2020). Reactie op concept factsheet (in Dutch).				
22	Copping & Hemery, editors (2020) - OES-Environmental 2020 State of the Science report: Environmental Effects of Marine Renewable Energy Development Around the World.				