FACTSHEET ENERGY FROM WATER

TECHNOLOGY DESCRIPTION																
Name technology	Salinity Gr	adient Power														
Date of factsheet	2-11-2020															
Description	Ruud van den Brink and Sam Lamboo Energy from the difference in salinity of two water bodies (also known as Salinity Gradient Power) can be extracted by placing membranes between a fresh and a salt water stream. There are two promising															
	techniques for generating electricity from fresh-saltwater differences: Reverse ElectroDialysis (RED) and Pressure Retarded Osmosis (PRO) (Witteveen+Bos & CE Delft, 2019).															
	In reverse	electrodialysis (R	FD) two typ	es of ion-se	lective mem	hranes allow r	ositive and neg	ative sodium	and chloride	ions to pass	through creat	ing a small cu	rrent By nl:	cing severa	l membrane	s in series a
	voltage dif	fference is create	d, which is co	onverted int	to electricity	(Witteveen+B	os & CE Delft, 20)19). Revers	e electrodialy	sis is the oppo	osite of the pro	cess used to	desalinate s	alt water u	sing membra	ines
	(electrodia	alysis or ED).														
	With Press	sure Retarded Os	mosis the m	embrane all	ows water to	n nass through	hut not dissolv	ed salt Ber	ause water na	iturally wants	to flow from	he fresh to th	ne salt side	a pressure (difference ar	ises with
	which elec	tricity can be ger	nerated via a	turbine (Wi	itteveen+Bos	s & CE Delft, 2	019).	eu sait. Det		itulaliy walits			ie sait side,			
																6
	The develo	opment of techni os, such as desali	ques that ex nation of sal	tract energy t water or st	/ from fresh- torage of ele	-salt water is h	ighly dependent h and salt water	on the dev	elopment of n attery 2020)	nembranes. L are therefore	earning effect	s of the devel	opment of a	comparable	membranes	for other
								(See Aquab								
TRL LEVEL																
		2020		203	80	2050	-									
	Witteveen	/ +Bos and CE Delf	t (2019) esti	mate the sta	9 atus of both	9 RED and PRO	-									
	at TRL 7 in	2019. There are	a number of	companies	(REDstack ir	n the										
Explanation	Netherlan	ds with a RED tes	t installation	and Saltpo	wer in Denm	nark with a										
	upscaling.	therefore it is exi	pected that t	plans for fur the technolo	rtner develoj ogv will have	pment and reached TRL										
	9 by 2030.				0,											
CURRENT INSTALLED CAPACITY AN		ELECTRICITY PRO	DDUCTION II	N THE NETH	IERLANDS											
Annual electricity production	Su kw (2019) Specify here															
Explanation	The Dutch	impact-scale-up	REDstack ha	s been runr	ning a protot	ype with a ma	ximum capacity	of 50 kW o	n the Afsluitdi	jk (Witteveen	+Bos & CE Del	ft, 2019).				
POSSIBLE LOCATIONS IN THE NETH	ERLANDS															
Locations	Places of f	Places of fresh water discharge into the ocean, such as rivers (including river arms of the Rhine (South Holland, Zeeland and the IJssel)), discharge sluices or pumping stations that discharge surface water or									e water or					
	purified w	aste water. The S	chelde, Eem	and Volker	ak also have	potential. (Wi	tteveen+Bos & (E Delft, 202	.9; REDstack, A	2020)				Matawiaa		
Explanation	Tweede M	aasvlakte): 1,000	in the summ) m3/s (Witte	eveen+Bos &	a discharge & CE Delft, 20	of 1,250 m3/s 019).	of fresh water in	ito the ocea	in. Most fresh	water flow in	ito the ocean i	akes place a t	ne Nieuwe	waterweg	ноек van Ho	bliand or
POTENTIAL IN THE NETHERLANDS		, ,	, ,		,	,										
			1	2030					2050							
		Main source	Source 2	Source 3	Source 4	Source 5	Main Source	Source 2	Source 3	Source 4	Source 5					
	Unit						21	2	2							
Energy potential (technical)	PJ/year	Source	Source	Source	Source	Source	Witteveen+Bos	Ecofys 201	7 Source	Source	Source					
	DI/user	0	Courses	Courses	Courses	Courses	Courses	Courses	Courses	Courses	Course					
Energy potential (economic)	PJ/year	ECOJYS 2017	Source	Source	Source	Source	Source	Source	Source	Source	Source					
Mitigation potential	Unit	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source					
	To determ	ine the technical	potential, W	/itteveen+Bo	os & CE Delft	t (2019) assum	e that a maximu	um of half o art of tho w	f the discharge	e at the Nieu	we Waterweg					
	m3/s is co	nsidered fully exp	oloitable. It is	a to adapta s assumed t	hat a total o	f 750 m3/s, an	id 1 MW per m3	flow rate sh	ould be techr	nically feasible	e.					
	In order to utilise the full technical potential at the Nieuwe Waterweg, it is expected that the Maas estuary will have to be (partially) closed off,															
Fundamentian	at the Nieu	uwe Waterweg th	nat utilize pa	rt of the flow	w and poten	tial may be ea	sier to fit in. Wit	teveen+Bos	& CE Delft (20	019) do not e	xpect a large-					
Explanation	scale contribution from blue energy before 2030. The industry does expect a substantial contribution in 2030 (150 MW or approximately 4.3															
	PJ/year; 60 MW in Zeeland, 25 MW in Ijmuiden, 50 MW at the Afsluitdijk and 15 MW at the Europoort) (REDstack, 2020).															
	Up to 2030	0, the market pot	tential (econ	omic potent	tial that is ex	pected to be r	ealized) is estim	ated by Eco	fys (2017) at (rounded) 0 P.	l/year. The					
	market po	market potential for 2035 is estimated at 1-8 PJ/year.														
COSTS																
				2020					2030	1				2050		
	Unit	Main source	Source 2	Source 3	Source 4	Source 5	Main source	Source 2	Source 3	Source 4	Source 5	Main source	Source 2	Source 3	Source 4	Source 5
	o //	37000				-	8000					4000	-			
Сарех	€/KW	PBL (2020) 213	Source	Source	Source	Source	Berekening op 1	Source	Source	Source	Source	Berekening o	Source	Source	Source	Source
Fixed Opex	€/kW/yea	r PBL (2020)	Source	Source	Source	Source	Berekening op I	Source	Source	Source	Source	Berekening o	Source	Source	Source	Source
Mariahla Oracu	1.1 :+	Course	Cauraa	Courses	Courses	Courses	Course	Courses	Courses	Courses	Courses	Courses	Cauraa	Courses	Cauraa	Courses
Variable Opex	Unit	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source
Grid connection	Unit	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source	Source
	C /I JA /b	0.41	0.41	1 1.0	0	Courses	0.1	0.1	5	Courses	Course	0.05	Courses	Courses	Courses	Courses
	€/KWN In the SDE	<i>PBL (2020)</i> ++ 2020 costs fo	r Salinity Gra	dient Powe	r are estima	ted to be high	<i>Witteveen+Bos</i> er than € 0.2007	<i>REDstack 2</i> kWh (PBL.	2020). An exa	ct LCOE is not	source mentioned.b	<i>witteveen+B</i> ut it has beer	calculated	bv Witteve	en+Bos & CE	Delft (2019)
	as € 0.41 /	kWh based on th	he investmer	nt and opera	ational costs	from the SDE	++.		,		,.			-,		,
	The manu	facturer DEDetad	k ovecete o o	act price of	0 10 0 15 6	/ W/h hacad a	n a husinass aas	o modo bu	-V (2010) with	0106/101	- for nowor nl	nto largar the			adda targat .	of installing
Explanation	The manufacturer REDstack expects a cost price of 0.10-0.15 € / kWh based on a business case made by EY (2018), with 0.10 € / kWh for power plants larger than 50 MW. Given REDstack's target of ins 150 MW by 2030, it is possible that this limit will be reached by 2030. Another estimate for the future cost of Salinity Gradient Power lies at 0.19 €/ kWh for a 1 MW power station (Witteveen+Bos & Cl 2019).							s & CE Delft,								
Explanation																
	Wittoyoon	+Ros & CE Dolft (2010) octim	ata raductio	ns to 0 10 f	/ kWh in 2020) and to 0.05 f /	kWh in 205	0 are possible	The investm	ont costs and	fived O&M co	sts are calci	ulated on th	o basis of th	opscumption
	that fixed	O&M costs are 39	% of the inve	estment cos	ts (Ecofys, 20	007), an intere	est rate of 5.6% (PBL, 2020) a	and a function	al lifetime of	30 years.					e assumption
					-						-					
	Salinity Gr	adient Power is a	baseload er	nergy source	e. Installatior	ns can easily b	e switched on ar	nd off. Buffe	ring (postpon	ing productio	n) is possible (REDstack, 202	20).			
Energy profile				0,												
	There are	seasonal variatio	ns in flow, w	hich can ha	ve an effect	on electricity p	production. Curr	ent concept	s are dimensio	oned for mini	mum available	flow, taking	into accoun	t seasonal v	variations, sh	ipping and
Explanation	other uses	of river currents install larger sys	tems and to	, this means produce me	s that produc ore or less de	ction can be ca epending on tl	arried out contin he flow rate, so f	uously thro hat the pla	ughout the ye nt will no long	ar and at ma er operate as	a base load.	capacity, and	the power	olant can de	eliver as a ba	se load. It is
EXPORT POTENTIAL	·															
	Worldwide	e potential has be	een estimate	d at 1 TW (E	Ecofys et al.,	2016) and also	o at 647 GW (IRE	NA, 2014).	In principle, th	e RED and PF	RO technologie	s can both be	applied to	exploit the	potential. RE	Dstack is a
Export potential	global leader in the development of reverse electrodialysis and is therefore well positioned to supply this market (REDstack, 2020). The PRO technology is not being developed in the Netherlands, but international parties are working on it. Part of the international market can therefore possibly be used by PRO installations.							but								
							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
									abrana and st	ack knowledg	e) in desalinat	ion of brackie	h water an	d seawater	into drinking	water (with
Evaluation	There is a	There is a large potential for Salinity Gradient Power worldwide. Utilization of the knowledge of RED (membrane and stack knowledge) in desalination of brackish water and seawater into drinking water (with ED technology) also leads to considerable export potential, both in new installations and in the replacement market (REDstack. 2020).														
Explanation	There is a ED techno	large potential fo logy) also leads to	or Salinity Gra o considerab	adient Powe le export po	er worldwide otential, botl	h in new instal	the knowledge llations and in th	e replacem	ent market (Ri	EDstack, 2020)).					
explanation	There is a ED techno	large potential fo logy) also leads to	or Salinity Gra o considerab	adient Powe le export po	er worldwide otential, bot	h in new insta	the knowledge llations and in th	e replacem	ent market (Ri	EDstack, 2020)).					
POSSIBLE NON-ENERGETIC SIDE EF	There is a ED techno	large potential fo logy) also leads to	or Salinity Gra	adient Powe le export po	er worldwide otential, bot	h in new insta	the knowledge llations and in th	e replacem	ent market (Ri	EDstack, 2020)).					
POSSIBLE NON-ENERGETIC SIDE EF Ecological effects	There is a ED techno FECTS With large	large potential fo logy) also leads to inlet volumes, in	or Salinity Gra o considerab	adient Powe le export po must be care	er worldwide otential, bot efully design	e. Utilization of h in new instal	the knowledge llations and in th the impingements (5	e replacem	inment of fish	EDstack, 2020	rganisms (Delta	ares, 2020). R	ecently the	effect of a c	commercial R	REDstack
POSSIBLE NON-ENERGETIC SIDE EF Ecological effects	There is a ED techno FECTS With large installation filtration c	large potential fo logy) also leads to inlet volumes, in n at the Afsluitdij of the water flows	or Salinity Gra o considerab let systems i k on organis s, of the ener	adient Powe le export po must be care ms has beer rgy recovery	er worldwide otential, both efully design n investigate y process and	e. Utilization of h in new instal ed to prevent d using field m d of the rinsing	the knowledge llations and in th the impingemen neasurements (D g techniques wer	of RED (mei e replacem nt and entra veltares et a re examinec	inment of fish (REDstack do	EDstack, 2020 and other or rticular, the e	rganisms (Delta effects of sucki emicals). In ad	ares, 2020). R ng organisms dition, model	ecently the into the inl -based rese	effect of a c ets of the in arch was ca	commercial R stallations, c rried out into	EDstack of the pre- o the effect
POSSIBLE NON-ENERGETIC SIDE EF Ecological effects	There is a ED techno FECTS With large installation filtration c of draining	large potential fo logy) also leads to inlet volumes, in n at the Afsluitdij of the water flows g brackish water f	or Salinity Gra o considerab let systems r k on organis s, of the ener from the pov	adient Powe le export po must be car ms has beer rgy recovery ver plant in	er worldwide otential, both efully design n investigate y process and the Wadden	ed to prevent d using field m d of the rinsing nzee. Conclusio	the knowledge llations and in th the impingemen neasurements (D g techniques wer on was that the n	e replacem nt and entra eltares et a re examinec nain effect	inment of fish ., 2020). In pa (REDstack do of a Salinity G	EDstack, 2020 and other or rticular, the e es not use ch radient Powe	rganisms (Delta effects of sucki emicals). In ad r plant on the	ares, 2020). R ng organisms dition, model environment	ecently the into the inl -based rese will be land	effect of a c ets of the in arch was ca use for the	commercial R istallations, c irried out inte intake and p	REDstack of the pre- o the effect re-treatment
POSSIBLE NON-ENERGETIC SIDE EF Ecological effects	There is a ED techno FECTS With large installation filtration c of draining of the wat	large potential fo logy) also leads to inlet volumes, in n at the Afsluitdij of the water flows g brackish water f er. If well designe	or Salinity Gra o considerab let systems r k on organis s, of the ener from the pov ed, it is expec	adient Powe le export po must be card ms has been rgy recovery ver plant in cted that ot	er worldwide otential, both efully design n investigate v process and the Wadden her environn	e. Utilization of h in new instal ed to prevent d using field m d of the rinsing nzee. Conclusio nental effects	the knowledge llations and in th the impingemen neasurements (D g techniques wer on was that the r and direct morta	of RED (mei e replacem nt and entra veltares et a re examinec nain effect ality effects	inment of fish I., 2020). In pa (REDstack do of a Salinity Gi on zooplankto	EDstack, 2020 and other or rticular, the e es not use ch radient Powe on and other	rganisms (Delta effects of sucki emicals). In ad r plant on the organisms can	ares, 2020). R ng organisms dition, model environment be limited by	ecently the into the inl -based rese will be land mitigating	effect of a c ets of the in arch was ca use for the measures. (commercial R istallations, c irried out inte intake and p Deltares et a	REDstack of the pre- o the effect re-treatment il., 2020).
POSSIBLE NON-ENERGETIC SIDE EF Ecological effects	There is a ED techno FECTS With large installation filtration c of draining of the wat Noise and	large potential fo logy) also leads to inlet volumes, in n at the Afsluitdij of the water flows g brackish water f er. If well designe fish safety are no	or Salinity Gra o considerab let systems i k on organis s, of the ener from the pov ed, it is expected t	adient Powe le export po must be car ms has beer rgy recovery ver plant in cted that otl	er worldwide otential, both efully design n investigate v process and the Wadden her environn	e. Utilization of h in new instal red to prevent d using field m d of the rinsing nzee. Conclusio nental effects e inlets and ou	the knowledge llations and in th the impingemen neasurements (D g techniques wer on was that the r and direct morta tlets can be clos	of RED (mei e replacem nt and entra veltares et a re examinec nain effect ality effects ed off (REDs	inment of fish I., 2020). In pa (REDstack do of a Salinity Gi on zooplankto	EDstack, 2020 and other or rticular, the e es not use ch radient Powe on and other	rganisms (Delta effects of sucki emicals). In ad r plant on the organisms can	ares, 2020). R ng organisms dition, model environment be limited by	ecently the into the inl -based rese will be land mitigating	effect of a c ets of the in arch was ca use for the measures. (commercial R istallations, c irried out into intake and p Deltares et a	EDstack of the pre- o the effect re-treatment Il., 2020).

Multiple use	In places where fresh water can no longer be drained off by a naturally ocurring slope, Salinity Gradient Power plants can also fulfill the function of drainage.
Social and landscape effects	Limited societal resistance is expected because power stations will be installed in places where they can be easily fitted (Witteveen+Bos & CE Delft, 2019). Installation at water level is possible, with a favorable effect on the efficiency of the process (REDstack, 2020). Use of space depends on the energy density of the membranes. For a 1 MW power station, an area of 1,500 square meters must be taken into account (Witteveen+Bos & CE Delft, 2019). According to REDstack, an installation takes up a comparable space as a coal-fired power station of the same size (REDstack, 2020). In addition to space utilization for the membrane stacks, space utilization for water intake and pre-filtration can be significant (Deltares et al., 2020)
Material use/circularity	RED membranes are designed to have a lifespan of 5-7 years, stacks 15-20 years, and a high degree of reuse is possible (REDstack, 2020).
SOURCES	
1	Witteveen+Bos & CE Delft (2019) - Perspectieven energie uit water: Nationaal potentieel voor 2030 en 2050 (in Dutch).
2	AquaBattery (2020) - https://aquabattery.nl/. Accessed 22 June 2020.
3	Ecofys (2017) - Overige hernieuwbare energie in Nederland. Een potentieel studie (in Dutch).
4	PBL (2020) - Eindadvies basisbedragen SDE++ 2020 (in Dutch).
5	EY (2018) - Blue energy investment memorandum (confidential).
6	Ecofys (2007) - Energie uit zout en zoet water met osmose (in Dutch).
5	REDstack (2020) - Interview 27 May 2020 and written response to draft factsheet (in Dutch).
6	RES Zeeland (2019) - Conceptversie 28 juni 2019 (in Dutch).
7	Ecofys, Netherlands Water Partnership, Blueconomy (2014) - Marktkansen en bijdrage aan verduurzaming van innovatieve technologie voor energie met water (in Dutch)
8	IRENA (2014) - Salinity gradient energy: Technology brief.
9	Deltares, Wageningen Marine Research, NIOZ, ZiltWater en REDstack (2020) - Onderzoek omgevingseffecten blue energy (in Dutch).
10	Deltares (2020) - Interview and written response to draft factsheets.