TECHNOLOGY FACTSHEET

Retrofit of post-combustion CO2 capture for steam crackers using MEA solvents

	hbustion CO2 capture fo	JI Steam	I CI ackers	s using i	VIEA SOIVEI	its						
Date of factsheet Author	20/05/2021 Kira West											
Sector	ccs											
	Industry: Petrochemicals											
ETS / Non-ETS Type of Technology	ETS CCS											
Description	There are a variety of techniques for post-combustion carbon capture that can be applied to flue gases; this factsheet considers chemical absorption with monoethanolamine (MEA) solvents.											
	Post-combustion capture does not require any major modifications to the refining process; MEA amine stripping technology is an end-of-pipe technology added to the plant to capture CO2 from existing flue gas streams. The modifications required for CO2 capture are cleaner flue gas (additional desulphurisation equipment); a CO2 capture unit (absorber and stripper columns, heat exchangers, condensers, and a reboiler); and a CO2 compression and dehydration unit. As the capture process requires electricity (notably for compression) and steam (mainly for solvent recovery), additional investments are also required to expand the site's utilities. If there is excess heat and electricity capacity, this could reduce the cost, but the potential to use existing excess heat or existing utility capacity depends largely on site design and site-specific constraints, so has not been considered in this factsheet. This factsheet is based on literature looking both at theoretical steam cracker sites and at specific sites. The cleaned flue gas enters the absorber and is brought into contact with the MEA amine solution. About 90% of the CO2 is absorbed into the amine solution (now together referred to a rich loading solution), and is then pumped to the stripper. In the stripper column, the rich loading solvent is heated with steam from the reboiler (which uses a heat exchanger to tran heat from external steam to a heat transfer fluid), breaking the chemical bonds between the amine solvent and the CO2, and causing it to release its CO2, creating a relatively pure CO stream. The CO2 continues to the compressor, which compresses the gas to about 110 bar/11 MPa for transport and storage. The remaining solution (called a lean loading solution), at a temperature of about 120 degrees C, is pumped back to the absorber to begin the cycle again, first passing through a heat exchanger to preheat the rich loading solution.											
	require combination of several flue gas streams (from furnaces and utilities), which leads to different equipment costs per unit of captured CO2. Second, the final concentration of CO2 i the flue gases is higher than those of a typical gas-fired power plant (cracking furnaces have concentrations above 10%vol, while a typical gas turbine has a concentration below 10%vol, and sometimes even below 5%vol). Post-combustion carbon capture can be either retrofitted or designed in a greenfield steam cracker; this factsheet considers a retrofit to an existing steam cracker. Integrated design co											
	lead to lower costs or higher efficiency. This factsheet considers configurations with capture of CO2 from the cracker furnaces and/or the utilities on site. The flue gases of the cracker furnace is estimated to have a CO2 concentration of about 13-15%vol. The power plant flue gases have slightly lower concentrations but can account for a large point source of CO2 emissions, and therefore are often included in studies of CO2 capture. At lower concentrations, the cost per tonne of captured CO2 rises. (Zero Emissions Platform 2013).											
TRL level 2020	TRL 6 Post-combustion carbon capture has r specific design and costs will vary, but demonstrated and is commercially ava	the basic prin	nciple of chemi	cal absorption	n carbon capture	using MEA sol	vents remains t					
	The Porthos project, which will transp with several industrial partners. The p 2024. While the existing steam cracke in the Netherlands, and this project or Terneuzen).	ort CO2 captu artners will ap rs in the Neth	red in the port oply for SDE++ erlands are no	of Rotterdan funding for th t part of the in	n by pipeline, for le project. Constr nitial plans for th	storage in retinuction, accordie project, the F	ed gas fields in ng to the proje Porthos project	ct timeline, will I would demonstr	begin in 2022 rate the feasil	, and operation pility of geolo	on will begin in gical CO2 stora	
TECHNICAL DIMENSIONS												
	Functional Unit		Value and Range									
Capacity	Mton CO2 captured			0,43		1	0,64		1	1,80		
				Current			2030			2050		
Potential		%	Min	-	Max	Min	-	Мах	Min	-	Max	
Market share		20	-	-	-	Min	-	Max	Min	-	Max	
Capacity utlization factor								1,0	00			
Full-load running hours per year												
Unit of Activity	Mton CO2 captured/year											
								25	00			
Technical lifetime (years) Progress ratio	25,00											
Hourly profile												
Explanation	Capacity varies depending on steam cracker size and utilities. Each of the steam crackers in the Netherlands has a different configuration, size and different processes on-site; thus this factsheet is not equally applicable to all steam crackers. The 3 sites considered are Sabic Geleen (1310 kt ethylene/year), Shell Moerdijk (910 kt ethylene/year) and Dow Terneuzen (3 un with a total capacity of 1825 kt ethylene/year).											
COSTS	It is not possible to determine the potential or market share of this technology in the future, as it will be highly dependent on policy, subsidies, and CO2 prices, as well as the future of the Dutch petrochemicals sector.											
	Utilization factor will likely be similar to the utilization factor of the steam cracker process equipment. No data was available on progress ratio or hourly profile, though CO2 capture processes are expected to run continuously, similar to the steam cracking process.											
			.,				,,					
Year of Euro	2015											
	Euro per Functional Unit			Current			2030			2050		
Investment costs Other costs per year	mln. € / Mton CO2 captured		139,00	170,00 -	229,00	Min	-	Max	Min	-	Max	
Fixed operational costs per year	min. € / Mton CO2 captured		Min	- 6,80	Max	Min	-	Max	Min	-	Max	
excl. fuel costs) /ariable costs per year	mln. € / MtCO2 captured		6,80	-	8,90	Min	-	Max	Min	-	Max	
Costs explanation	Cost estimates in literature for carbon Sherif (2010) presents a study of the B petrochemicals sectors, and note con: the underlying uncertainty in cost esti company and site-specific parameters	orealis steam siderable unce mates, the co	cracker in Ster ertainty in thes	nungsund, Sw e cost estima	eden. Ho et al. 20 tes. Fixed O&M c	011 and Kuram osts from Sher	ochi et al 2012 if 2010 are calc	both provide ge ulated on the ba	neral estimat sis of 4% of c	es for the ref apital investn	ning and nent. In additio	
	Cost estimates are often presented or investment costs presented above, wi (which takes into account the energy kt/year ethylene capacity steam crack 75/tCO2 captured.	nich are overn penalty - CO2	ight capital inv emitted in ger	vestments per nerating the a	unit of capacity. dditional energy	Note that cost needed for cap	per tonne of C ture and comp	O2 captured diff ression of CO2 - :	ers from the and is therefo	cost per tonn ore higher). H	e of CO2 avoid owever, for a 6	

ENERGY IN- AND OUTPUTS											
	Energy carrier	Unit	Current			2030			2050		
	Main output:	3,30			-			-			
	Steam	PJ	2,40	-	4,40	Min	-	Max	Min	-	Max
Energy carriers (per unit of main output)	Electricity	рJ		0,48			-				
	,		0,45	-	0,62	Min	-	Max	Min	-	Max
		PJ		-	1		-	Т		-	
			Min	-	Max	Min	-	Max	Min	-	Max
		PJ		-	1		-	1		-	
	Many steam crackers have on-sit		Min	-	Max	Min	-	Max	Min		Max
nergy in- and Outputs xplanation	additional steam demand for CO capacity on-site to meet the extr cracker sites.	2 capture can be m	net by on-site u	tilities or can b	e purchased fro	m an off-site	steam generato	or. Some sites ma	ay already have	sufficient ste	am generatio
ATERIAL FLOWS (OPTIONAL)	-		-						-		
	Material	Unit	Current			2030			2050		
Material flows Material flows explanation	MEA solvent (make-up)	kt	2,09			-			-		
			2,09	-	2,09	Min	-	Max	Min	-	Max
			1.45-	-	A.4	A.45-	-	14-00	A.4	-	
	MEA solvent use and make-up in	put for stoom crost	Min king CO2 contu	-	Max mod to be simil	Min ar to that of re		Max	Min	-	Max
	ated emissions or emissions redu		king CO2 captu	le units is assu	ineu to be sinna		ennenes.				
mosions (non-nucly chergy-rel	Substance	Unit		Current		1	2030			2050	
	CO2 captured	Mton CO2-ea		-1,00		-			-		
			-1,00	-	-1,00	Min	-	Max	Min	-	Max
Emissions				-			-			-	
			Min	-	Max	Min	-	Max	Min	-	Max
				-			-			-	
			Min	1	Max	Min	-	Max	Min	-	Max
				-			-			-	
			Min	-	Max	Min	-	Max	Min	-	Max
missions explanation	The CO2 capture rate that is achi CO2 capture rates of about 71-8									factsheet co	nsiders overa
DTHER			•			-			•		
Parameter	Unit		Current			2030			2050		
				-			-	1		-	
			Min	-	Max	Min	-	Max	Min	-	Max
			Min	-	Max	Min	-	Мах	Min	-	Max
			IVIIII	-	IVIUX	IVIIII	-	IVIUX	IVIIII		IVIUX
			Min	-	Max	Min	-	Max	Min	-	Мах
				-			-	max		-	TTTGA
			Min	-	Max	Min	-	Max	Min	-	Max
xplanation											
REFERENCES AND SOURCES											
	tegration of a Carbon Capture pro gy and Environment, Goteborg.	cess in a chemical	industry: case s	tudy of a stea	m cracking plant	t." Master's Th	iesis, Chalmers	University, Inno	vative and Sust	ainable Chem	ical Engineer
2 M.T. Ho, et al. (2011)). "Comparison of MEA capture co	ost for low CO2 emi	issions sources	in Australia." I	nternational Jou	urnal of Green	house Gas Cont	trol 5: 49-60.			
	orm. (2013). CO2 Capture and Sto	rage (CCS) in energ	gy-intensive ind	ustries: An ind	ispensable rout	e to an EU low	-carbon econo	my. European Te	echnology Platfo	orm for Zero	Emission Fos
Fuel Power Plants.											
	2012). "Comparative assessment of		-			-		d Combustion S	cience 38: 87-1	12.	
	(2017). Understanding the Cost of	ě		°	1	01					
	IEAGHG Technical Review 2017-TI			itting CO2 cap	ture in an Integr	ated Oil Refine	ery. IEA Greenh	ouse Gas R&D P	rogramme.		
	oots (2021). Eindadvies Basisbedi	-									
8 Petrochemicals Euro	pe (2021). Cracker Capacity. http:	://www.petrocher	nistry.eu/abou	-petrochemis	ry/petrochemic	ais-facts-and-	rigures/cracker	-capacity/, acces	ssea 8 Decembe	r 2021.	