TECHNOLOGY FACTSHEET

TNO

PRE-COMBUSTION CO2	CAPTURE ADD-ON FOR	R POWER	PLANTS	- SOLID I	UELS						
Date of factsheet	12-8-2020										
Author	Sam Lamboo										
Sector	CCS										
ETS / Non-ETS	ETS										
Description	In this factsheet a generic solution to canture CO2 before combustion of solid fuels such as coal, solid biomass or municipal solid waste (MSW) in power plants is considered. Peteropeo										
Description	technology is integrated gasification combined cycle (IGCC) plant, where syngas (a mix between CO, CO2 and H2) is produced from which CO2 can be captured before the syngas is combusted in a combined cycle plant. Depending on the fuel used, there are different requirements for syngas cleaning in preparation for CO2 capture (dust filters, NOx removal, sulphur scrubbers, etc.), which will impact performance and costs. The performance and cost ranges are considered to be sufficiently close for the variety of solid fuels to group them together in a single factsheet.										
	The focus of this factsheet is solely on CCS for IGCC plants. The reference is IGCC plants without CCS and all reported data is relative to the reference plant (e.g. investment costs are additional costs for CCS and exclude investment costs for the IGCC plant, such as the gasification unit). There are a variety of techniques that can be used to separate CO2 from the syngas, including using sorbents/solvents, membranes and distillation machinery (IEA, 2013). After gasification the CO2 concentration in the syngas is 8-20 %, which is potentially higher than the concentration after combustion (12-14%) (IPCC, 2005). Physical solvents, such as Selexol,										
	are the most commonplace technique for pre-combustion capture for IGCC power plants (Rubin et al., 2015a), therefore they are considered the default for this factsheet. Similar to chemical solvents, CO2 is attached to the physical solvents in an absorber after which the solvents are separated and regenerated using steam to release the CO2 and enable reuse of the solvent (IEAGHG, 2014a). Compression and dehydration are part of the CO2 capture process. Reports on CO2 pressure after capture vary from 8 MPa to 20 MPa in the studies cited here. At these pressure levels lit is possible to transport the CO2 through low-pressure pipelines (maximum pressure of 4.8 MPa) or high-pressure pipelines (minimum of 9.6 MPa) (IPCC 2005) with minimal additional										
	(de)compression required. It is there	efore assumed	that no additio	nal compressi	on step is requi	red after captur	re to prepare	the CO2 for pipe	line transport.	If CO2 is trans	ported in liquid
TRL level 2020	TRL 9 Benchmark IGCC plants with pre-combustion CCS are reported to be TRL 9, even though there are several lower TRL options that can improve performance but require further development (IEAGHG, 2014b). The capture technology is similar to processes used in ammonia production, a well established process (IEAGHG, 2014b).										
TECHNICAL DIMENSIONS											
Connecitu	Functional Unit					V	alue and Ran	ige			
Capacity	Mton CO2/year			3 00			4.00			6.00	
	EU	Gton CO2		Current			2030			2050	
Potential				300.00			-			-	
			300.00	_	300.00	Min	_	Мах	Min	-	Max
Market share	0	%	Min	-	Max	Min	-	Max	Min	-	Max
Capacity utlization factor			IVIIII	_	Ινιαλ	IVIIII	_	Ινιαλ	-		IVIUX
Full-load running hours per year								7,	500.00		
Unit of Activity	Mton/year										
Technical lifetime (years)	30-40 (IPCC 2005)										
Progress ratio	0.8-0.975 (Rubin et al 2015b)										
Explanation	Annual capture capacity depends or	n many factors	such as type of	feedstock (m	ore CO2 in flue §	gas of coal powe	er plant than	natural gas pow	er plant), size (of power plant,	capture rate,
	Capture potential is dependent on number of deployed power plants and the CO2 capture rates - and therefore difficult to assess. A potential limiting factor can be the available storage capacity, which is estimated at (at least) 300 Gton CO2 in the EU and 10,000 Gton CO2 globally (IOGP 2019). Full-load running hours per year are determined by the power plant running hours, typically aroun 7,500 hours per year. Progress ratio is based on Rubin et al (2015b) learning rate projections of 2.5-20% for coal IGCC with CCS. No estimates are given in the study for biomass with CCS.										
COSTS	•										
Year of Euro	2015	ait		Current			2020			2050	
Investment costs	€ / kWe		1,150.00			1.350.00			1,350.00		
	0,		850.00		1,600.00	1,200.00		1,600.00	1,200.00		1,600.00
Other costs per year	€/kWe		Min	-	Мах	Min	-	Мах	Min	-	Мах
Fixed operational costs per year (excl. fuel costs)	€/kWe		57.50	57.50	57.50	56.00	56.00 –	56.00	56.00	56.00 -	56.00
Variable costs per year	€ / MWh		0.50	1.00	1.20	0.50	1.00 -	1.20	0.50	1.00	1.20
Costs explanation	included. The reference plant is a coal or lignite IGCC plant without CCS. Costs based on coal and lignite IGGC plants with pre-combustion CCS as there is more data available on these types of plants than other solid fuel plants. Costs for biomass and MSW are expected to be higher than average costs for coal and lignite plants due to additional requirements for flue gas cleaning (e.g. SOx and NOx removal) to prevent rapid solvent degradation. It was not possible to clearly identify what the additional costs consist of, as some sources do not elaborate and others compare costs to pulverised coal plants and not IGCC. Additional investment costs at least include CO2 compression unit (IEAGHG, 2014a). Additional fixed O&M costs are expected to include additional maintenance costs, labour costs, insurance costs and taxes (IEAGHG, 2014a). Variable O&M costs include additional costs for chemicals and catalysts (ZEP, 2011; IEAGHG, 2014a). Costs per ton CO2 captured are estimated by Rubin et al. (2015a) at 21-31 €/ton. Costs per avoided ton CO2 generally range from 28-44 €/ton CO2 (Rubin et al. 2015a, IEA, 2013; ZEP 2011). IEAGHG (2014a) reports significantly higher CO2 avoidance costs: 70-75 €/ton CO2. Some sources use supercritical pulverised coal plants without CCS as a reference instead of IGCC without CCS, which are less costly and therefore lead to a higher calculated cost of avoided CO2. Note that all these sources report costs for new coal-fired IGCC power plants with new capture plant and lower economies of scale at smaller existing plants (Rubin et al. 2015a).									nt are not ss and MSW solvent GCC. Additional insurance A, 2013; ZEP ce instead of wer plants with new	

ENERGY IN- AND OUTPUTS											
	Energy carrier	Unit	Current			2030			2050		
Energy carriers (per unit of main output)	Main output:	PI	-1.00			-			-		
	Electricity	1.7	-1.00	-	-1.00	Min	-	Max	Min	-	Max
	Electricity	PJ		1.10			-			-	
			0.18	-	1.14	Min	-	Max	Min	-	Max
	leat	PJ		0.10			-			-	
			0.10	-	0.18	Min	-	Max	Min	-	Max
		РJ		-			-	1		-	
			Min	-	Max	Min	-	Max	Min	-	Max
	The energy penalty for CO2 capture is estimated at 20-35% (% more input/MWh) (Rubin et al. 2015; IPCC, 2005; IEA, 2013). The energy penalty for IGCC plants with CCS is partially										
Energy in- and Outputs explanation	determined by energy required to operate pumps and compressors and the regeneration of the solvent. In addition to that there is a potential loss in power output due to changes in										
	the performance of the plant (Rubin et al., 2015a; IEAGHG, 2014b). It is assumed half the required energy is electric energy for compression and pumps and half is heat for the thermal regeneration of solvents.										
	Additional energy required for capture and compression are estimated to be 0.17-0.3 MWh/ton CO2 captured, based on Rubin et al. (2015a) data										
									, aata.		
MATERIAL FLOWS (OPTIONAL)											
	Material	Unit		Current		2030			2050		
Material flows			Min	-	Max	Min	-	Max	Min	-	Max
				-			-			-	
			Min	-	Мах	Min	-	Max	Min	-	Max
Material flows explanation											
EMISSIONS (Non-fuel/energy-related en	nissions or emissions reductions (e.	g. CCS)									
	Substance	Unit	Current				2030		2050		
Emissions	02	ton/iviwn	1.10	-0.90	0.75	8.4*	-	0.4	0.41	-	8.4.
			-1.10	-	-0.75	IVIIN	-	IVIAX	IVIIN	-	IVIAX
			Min	-	Mary	Min	-	Max	Min	-	Max
			IVIIII	_	IVIUX	IVIIII	-	IVIUX	IVIIII	-	IVIUX
			Min	-	Max	Min	-	Max	Min	-	Max
			IVIIII		IVIUX	IVIIII		IVIUX	IVIIII		IVIUX
			Min	_	Max	Min		Max	Min	-	Max
	The inclusion of CCS reduces CO2 er	nissions from a	nlant Referen	ce is a supercrit	rical nulverised	coal power pla	l ant with no CCS		2 emissions red	uction is assur	med (Rubin et
	al., 2015a), CO2 emissions from flue	gas before cap	ture (including	CO2 from addi	tional fuel use	for energy rea	uired for CO2 c	apture) ranges	from 0.85-1.25	ton CO2/MW	h (Rubin et al
Emissions explanation	2015a; JRC, 2014). Emissions to the	atmosphere aft	er capture are	0.09-0.28 ton 0	CO2/MWh (Rub	oin et al., 2015a	a; JRC, 2014).				(,
	Emissions in coal IGCC plants without	ut CCS are in the	e range of 0.75	0.9 ton/MWh	(Rubin et al. 20)15a; JRC, 2014	; Manrtipragad	a, 2019)			
OTHER											
Parameter	Unit			Current			2030			2050	
				0.85			-			_	
Capture rate	% CO2 captured		0.80	_	0.90	Min	_	Мах	Min	_	Max
				-			-	1		-	1
			Min	-	Max	Min	-	Мах	Min	_	Max
				-			-			-	
			Min	-	Мах	Min	-	Max	Min	-	Max
				-			-	•		-	
			Min	-	Мах	Min	-	Max	Min	-	Max
Explanation	Some reports indicate higher captur	re rates are tec	nnically and eco	onomically feas	ible in some sp	Decific application	ions (IEAGHG 20	014b).			·
REFERENCES AND SOURCES	•				-						

IEA (2013) - Technology Roadmap: Carbon Capture and Storage
IPCC (20015); Kelly, Thambimuthu, Soltanieh, Abanades et al - Special Report on Carbon dioxide Capture and Storage
Rubin, Davison and Herzog (2015a) - The cost of CO2 capture and storage
IEAGHG (2014a) - CO2 capture at coal based power and hydrogen plants
IEAGHG (2014b) - Assessment of Emerging CO2 Capture Technologies and their Potential to Reduce Costs
IOGP (2019) - The Potential for CCS and CCU in Europe
Rubin, Azevedo, Jaramillo and Yeh (2015b) - A review of learning rates for electricity supply technologies
JRC (2014) - Energy Technology Reference Indicators
ZEP (2011) - The cost of CO2 capture
Mantripragada, Zhai and Rubin (2019) - Boundary dam or Petra Nova - Which is a better model for CCS energy supply?