

CARBON CAPTURE RETROFIT TO REF BASIC OXYGEN FURNACE STEELMAKING ON COKE OVENS, HOT STOVES, LIME KILNS AND STEAM GENERATION UNITS (60% AVOIDED EMISSIONS)

Date of factsheet	7-9-2020										
Author	Kira West										
Sector	Industry: Iron and steel										
ETS / Non-ETS	FTS										
Type of Technology	Emission reduction										
Type of Technology Description	The most common steelmaking route is called blast furnace-basic oxygen furnace (BF-BOF) steelmaking, which was invented in 1948 and now accounts for about 70% of global crude steel output (World Steel 2019). This process is also called basic oxygen steelmaking (BOS) or oxygen converter steelmaking (OCS). In the blast furnace, iron ore (in the form of sinter, pellets, and lump ore) and coal (in the form of coke and pulverized coal), and flux (alkaline or "basic" materials, typically burnt lime or dolomite, which react with impurities to form sing that can be separated) are injected into the top of the blast furnace, flowing downward into contact with upward-moving, hot, CO-rich gases at about 900 to 1300 degrees C. Through this process, the iron ore (Fe2O3) is reduced into elemental iron, and the iron is mixed with carbon monoxide (CO) from the flue gas. Carbon (supplied by coal and coke) acts as a reducing agent. The molter, carbon-rich (4-5%) pig iron (also referred to as hot metal) that is produced in the blast furnace, in a exothermic oxidation reaction as pure, hot oxygen is blown over the metal, to reduce the carbon content to below 2% (often less than 1%, depending on final product specifications). Liquid crude steel is then tapped from the furnace, and slag (a byproduct, a mixture of metal 0xides) removed. Coke (a high carbon content fuel, with most impurities present in coal removed) can be made onsite by heating coal in a coke oven to a high temperature (typically around 1000 degC) in vacuum conditions, or can be purchased from an offsite coke oven. In this configuration, CO2 is captured from the flue gases of heaters for coke oven batteries, hot stoves, lime kilns, and steam generation units, using post-combustion (end-of-pipe) capture technology, reaching about a 60% reduction in CO2 emissions compared to the baseline case. For the purposes of this factsheet, chemical absorption using MEA solvent has been considered as the capture technology. Off-gases from the blast furnace, or by combustion to pro										
TRL level 2020	pure CO2 stream. The CO2 continues to the compressor, which compresses the gas to about 110 bar/11 MPa for transport and storage. The remaining solution (called a lean loading solution), now at a temperature of about 120 degrees C, is pumped back to the absorber to begin the cycle again, first passing through a heat exchanger to preheat the rich loading solution. TRL 7										
	Post-combustion CO2 capture technology has been demonstrated in a number of projects globally, including one project in the iron & steel sector. The only operating carbon capture project in the steel sector is in Abu Dhabi at Emirates Steel's natural gas-fired DRI plant. It uses MEA amine absorption to separate CO2 from the flue gases. However, CO2 capture has not yet been commercialized in a conventional BF-BOF plant.										
TECHNICAL DIMENSIONS											
Capacity Potential	Functional Unit						Value and Ran	ge			
	Mton crude steel		Min		1	-			Max		
	NI	Mton crude		Current			- 2030			2050	
		steel	6.81	6.81	6.81	Min	-	Мах	Min		Мах
Market share		%	Min	-	Мах	Min	-	Мах	Min		Мах
Capacity utlization factor									0.87		
Full-load running hours per year											
Unit of Activity	Mton steel/year										
Technical lifetime (years)									25.00		
Progress ratio											
Explanation	Potential has been given as the current total production of crude steel in the Netherlands in 2018. Because this is an end-of-pipe technology, it would be technically feasible to retrofit the entire capacity of Dutch steel production (which could evolve over time as well). Some operational parameters, such as full-load hours and hourly profile, have not been included because insufficient data is available. For post-combustion CO2 capture, capacity can be adapted to fit the plant, so no typical capacity is given. Capacity utilization factor is derived from 2018 data for conventional BF-BOF steelmaking in the Netherlands (without carbon capture). It is assumed that the addition of post-combustion carbon capture would not affect the utilization rate.										
COSTS	2045										
rear of Euro	2015	it.		Current			2020			2050	
Investment costs	mln. € / Mton crude steel	233.39 76.96 – 233.39			- Min – May			- Max			
Other costs per year	mln. € / Mton crude steel		Min	-	Max	Min		Max	Min	-	Max
Fixed operational costs per year (excl. fuel costs)	mln. € / Mton crude steel		25.17	25.17	25.17	Min	-	Мах	Min	-	Мах
Variable costs per year	mln. € / Mton crude steel		1 87	1.87	1 87	Min	-	Max	Min	-	Max
Costs explanation	1.87-1.87Min-MaxMin-MaxCosts are for a retrofit of CO2 capture and compression equipment and associated utilities (including the cost of separation and compression of CO2, but not transport and storage).This factsheet considers a retrofit, end-of-pipe addition to a steelmaking process, and thus the costs are given per Mt crude steel output from the main process equipment. Though atthe high end of the range, the IEAGHG 2013 study has the most detailed technical assessment of the equipment and operations, and is therefore chosen as the main source for costdata. Operating and variable costs include only direct labour costs and annual fixed maintenance costs for the carbon capture facilities. Fixed O&M for the full steelmaking processafter retrofit would be about €105 million per year. Fixed OPEX is given as mln € per Mt/yr steel capacity.Variable costs shown above are for MEA sludge disposal costs. Variable costs for the full retrofitted plant (including water, refractories, electrodes, casting powder, and sludge/slagdisposal fees) would be about €10.5 million/Mton crude steel. Variable costs exclude purchased scrap, ferroalloys, fluxes, and solvent (this can be calculated from the material flowsbelow (assumed costs are provided in comments)). Fuel costs, including those for on-site oxygen production, are also excluded.										

ENERGY IN- AND OUTPUTS												
	Energy carrier	Unit	Current		2030			2050				
Energy carriers (per unit of main output)	Main output:			-			-			-		
	Electricity	PJ	Min	-	Max	Min	-	Max	Min	-	Max	
	Steam	PJ		4.25			-			-		
	Steam		4.25	-	5.43	Min	-	Max	Min	-	Max	
	0	PJ		-			-			-		
	U		Min	_	Max	Min	_	Max	Min	-	Max	
	0	DI		-			-			-		
	0	1.2	Min	-	Max	Min	-	Max	Min	-	Max	
	In and outputs are given only for additional steam and electricity demand needed for the CO2 capture plant (absorption, compression, and solvent regeneration). This factsheet											
	considers a retrofit, end-of-pipe addition to a steelmaking process, and thus the energy flows are given per Mt crude steel output from the main process equipment. All units are given											
energy in- and Outputs explanation	as PJ/Mton crude steel. Saturated steam at 9 bar is assumed (IEAGHG 2013). For steam demand calculations, 1.39 t CO2 is assumed to be captured per tonne of crude steel. Zhang et al give a range of 3.3-3.9 GJ/t CO2 captured for regeneration of MEA solvent.											
MATERIAL FLOWS (OPTIONAL)	-											
	Material	Unit	Current				2030		2050			
Material flows	Crude steel	Mton stool	-1.00			_			-			
		witon steel	-1.00	-	-1.00	Min	-	Max	Min	-	Max	
	MEA solvent	Mton		0.00			-	-		-		
		Miton	0.00	-	0.00	Min	-	Max	Min	-	Max	
	While most of the MEA solvent is	recovered and re	used, the small	l amount that i	s lost in the pro	ocess must be r	replaced; this is	s what is shown	here (and also	included in th	e variable	
Material flows explanation	costs of the process). Assumed co	sts: MEA solvent	(make-up) EUR	1638/t (IEAGH	G 2013).This fa	actsheet consid	lers a retrofit, e	end-of-pipe add	lition to a steel	making proces	s, and thus the	
	material flows are given per Mt cr	ude steel output	from the main	process equip	nent.							
EMISSIONS (Non-fuel/energy-related en	missions or emissions reductions (e.g. CCS)										
	Substance	Unit	it Current				2030			2050		
Emissions	CO2 captured	Mton CO2-eq	-1.39			-			-			
			-1.39	-	-1.39	Min	-	Max	Min	-	Max	
	CO2 (process)	Mton CO2-eq		0.52			-	-		-		
			0.52	-	0.52	Min	-	Max	Min	-	Max	
				-			-			-		
			Min	-	Мах	Min	-	Max	Min	-	Max	
				_			-			-		
			Min	-	Мах	Min	-	Max	Min	-	Max	
	About 65% of the total CO2 from t	he plant is captu	red by capturin	ng 90% of CO2 f	rom flue gases	from the coke	oven, hot stov	es, lime produc	ction and on-sit	e power plant.	This results in	
	about a 60% avoided emissions co	mpared to the b	ase case (witho	ut CO2 capture	e). The negative	e emissions her	re represent ca	ptured CO2 fro	m the coke ove	en, hot stove, l	ime	
Emissions explanation	production, and on-site power pla	nt. About 0.76 tC	CO2/t crude ste	el are emitted	after CO2 capt	ure, of which a	bout 0.56 tCO2	/t crude steel a	are from chemi	cal reactions ir	the process	
	(and the remainder from fuel com	bustion). Insuffic	ient data was a	vailable to det	ermine the imp	pact of the retr	ofit on NOx, SC	02 and PM emis	ssions.			
OTHER												
Parameter	Unit		Current			2030			2050			
0	0			-			-			-		
,						Min	_	Мах	Min	_	Max	
0	0		Min	-	Max	IVIIII					IVIGX	
0	0		Min	-	Max	101111	-			-	WIGX	
0	0		Min Min	- - -	Max Max	Min	-	Max	Min	-	Max	
0	0		Min Min	- - - -	Max Max	Min	- - - -	Max	Min		Max	
0 0	0 0		Min Min Min	- - - - -	Max Max Max	Min Min Min	- - - -	Max Max	Min Min	- - - -	Max Max	
0 0	0 0		Min Min Min	- - - - - -	Max Max Max	Min Min	- - - - -	Max Max	Min Min	- - - - -	Max Max Max	
0 0 0	0 0 0		Min Min Min Min	- - - - - -	Max Max Max Max	Min Min Min Min	- - - - - -	Max Max Max	Min Min Min	- - - - - -	Max Max Max	

REFERENCES AND SOURCES

IEAGHG (2013), "Iron and Steel CCS Study (Techno-economics Integrated Steel Mill)," https://ieaghg.org/docs/General_Docs/Reports/2013-04.pdf.

CBS (2019), "Energiebalans; aanbod en verbruik, sector", https://opendata.cbs.nl/statline/portal.html? catalog=CBS& la=nl&tableId=83989NED& theme=119.

European Commission (2016), "Iron production by electrochemical reduction of its oxide for high CO2 mitigation (IERO)."

Netherlands Environmental Assessment Agency (2009), "Greenhouse Gas Emissions in the Netherlands 1990-2007."

http://www.emissieregistratie.nl/erpubliek/documenten/Algemeen%20(General)/Emissierapportages%20(Emission%20reports)/NIR%20Greenhouse%20Gas%20Emissions%20in%20the%20Netherlands/NIR2009.pdf, p 78.

Wang et al. (2017), "A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants," 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland.

A. Carpenter (2012), "CO2 abatement in the iron and steel industry", IEA Clean Coal Centre, https://www.usea.org/sites/default/files/012012_CO2%20abatement%20in%20the%20iron%20and%20steel%20industry_ccc193.pdf.

Ho, M., Bustamante, A., and Wiley, D. (2013). "Comparison of CO2 Capture Economics for Iron and Steel Mills." International Journal of Greenhouse Gas Control.

A. Keys, M. van Hout, and B. Daniëls (2019), "Decarbonisation Options for the Dutch Steel Industry," MIDDEN report, https://www.pbl.nl/sites/default/files/downloads/pbl-2019-decarbonisation-options-for-the-dutch-steelindustry_3723.pdf.

Xue B., Yu, Y., Chen, J. et al. (2017). "A comparative study of MEA and DEA for post-combustion CO2 capture with different process configurations. International Journal of Coal Science & Technology.

Zhang, W., et al. (2016). "Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture." Applied Energy 168: 394-405.

World Steel (2019), "Steel Statistical Yearbook 2019 Concise version", downloaded from: https://www.worldsteel.org/en/dam/jcr:7aa2a95d-448d-4c56-b62b-b2457f067cd9/SSY19%2520concise%2520version.pdf.