

AUTOTHERMAL REFORMIN	G (ATR) FOR HYDROGEN	PRODUCT	ION WITH	CARBON	CAPTURE A	AND STOR	AGE (CCS)					
Date of factsheet	G (ATR) FOR HYDROGEN PRODUCTION WITH CARBON CAPTURE AND STORAGE (CCS) 6-5-2019											
Author	Jacob Janssen											
Sector	Hydrogen supply											
FTC / Non FTC	ETS											
ETS / Non-ETS Type of Technology	Autothermal reforming											
Description	Autothermal reforming (ATR) is the combination of both partial oxidation (POX) and steam methane reforming (SMR) in one reactor operating at 900-1150 degrees Celcius with energy											
	efficiency lower than that of SMR. The typical reaction is given by the following equation:											
	CH4+H20/2+O2/4 <-> CO + 5H2/2											
	The described ATR plant includes a	carbon canturo	and storage (C	·CS) componen	+							
	The described ATA plant includes a	carbon capture	and storage (e	es) componen	· ·							
TRL level 2020												
TECHNICAL DIMENSIONS												
	Functional Unit Va						/alue and Rang	alue and Range				
Capacity	MW	10,228										
			822		-			10,228				
Potential	MW	NL					Unlimited					
				Min			-			Max		
Market share	%								ī		-	
			Min		-			Max				
Capacity utilization factor	Diference								1.00			
Unit of Activity Technical lifetime (years)	PJ/year								10			
Technical lifetime (years) Full-load running hours per year									10 8,030			
Progress ratio	1.00											
Explanation	Jakobsen and Atland (2016) refer to	a facility of 50	0,000 kg/day, c	orresponding t	o a capacity of	822 MW. NOE	(2018) reports			reference).		
соѕтѕ				-								
Year of Euro	2015											
	Euro per Functional U	Current		2030			2050					
Investment costs per year	mln. € / MW			1.20			1.20			1.20		
			1.20	-	1.40	1.20	-	1.40	1.20	-	1.40	
Other costs per year	mln. € / MW			_	_			-		-	-	
			Min	-	Max	Min	-	Max	Min	-	Max	
Fixed operational costs per year	mln. € / MW		0.04			0.04			0.04			
(excl. fuel costs)			0.04	-	0.07	0.04	-	0.07	0.04	-	0.07	
Variable costs per year	mln. € / MW			1	-		1	-		I	-	
	Min - Max Min - Max Min - Max Min - Max Min - On one side, NOE (2018) reports on the costs of 10,678 million pounds for a 89.6 TWh/year hydrogen output facility (used as main reference for CAPEX). The above number is								<i>Max</i> er is			
Costs explanation	converted to eur/MW. On the other side, Jakobsen and Atland (2016) report on 972 million euros for a 500 t/day hydrogen facility.											
Costs explanation	NOE (2018) report OPEX as 3% of CAPEX. Jakobsen and Atland (2016) consider 5% of CAPEX as OPEX.											
ENERGY IN- AND OUTPUTS				-,								
ENERGY IN- AND COTPOTS	Energy corrier	Current			2030			2050				
Energy carriers (per unit of main output)	Energy carrier	Unit										
	Main output: Hydrogen	PJ	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00	
	11741.08611		1.00	0.05	1.00	1.00	0.05	1.00	1.00	0.05	1.00	
	Electricity	PJ	0.04	-	0.05	0.04	-	0.05	0.04	-	0.05	
	Notural and grant (C. 112)	D.		1.20	,		1.20			1.20		
	Natural gas resource (gas fields)	PJ	1.18	-	1.20	1.18	-	1.20	1.18	_	1.20	
					-			-			-	
			Min	-	Max	Min	-	Max	Min 	-	Max	
Energy in- and Outputs explanation	NOE (2018) reports an efficiency of a power input of 27.1 MW on a total				tricity and natu	ral gas inputs.	Jakobsen and A	tland (2016) gi	ve an overall e	tficiency of 82%	6, and describe	
	<u> </u>	<u> </u>	,									
EMISSIONS (Non-fuel/energy-related er		_										
	Substance Unit CO2 Mton		Current			2030			2050			
	CO2	iviton	45.00	-15.60	4.30	45.00	-15.60	4.30	45.00	-15.60	4.30	
	<u> </u>		-15.60	_	-1.39	-15.60		-1.39	-15.60		-1.39	
Emissions			Min	_	- Max	Min	_	- Max	Min	_	- Max	
			IVIIII	<u> </u>	IVIUX	IVIIII		IVIUX	141111		IVIUA	
			Min	-	Max	Min	-	Max	Min	-	Max	
				1	-		1	-		1	-	
			Min	-	Max	Min	-	Max	Min	-	Max	
Emissions explanation	The numbers specified are for Mtor			-		total emission	s of 16 Mt/yea	r and a capture	rate of 96%, w	hereas the pla	nt reported in	
·	Jakobsen and Atland (2016) has tota	al emissions of	4,134 t/day and	a capture rat	e ot 92%.							
REFERENCES AND SOURCES												
Camacho, Y. M., Bensaid, S., Piras, G., An				/drogen produ	ction from bioga	as autotherma	l reforming. Cle	an Technologie	es and Environr	nental Policy, 1	.9(5), 1437-	
Jakobsen, Daniel; Åtland, Vegar (2016). N		ogen Production	n.									
NOE (2018). H21 North of England Report v1.0 - Northern Gas Networks												