TECHNOLOGY FACTSHEET

	respectively.		5 110051 7) 1100			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		o, o 270, o 170 mi				
COSTS	-											
Year of Euro	2015											
Investment costs	Euro per Functional	Unit	Current				2030		2050			
	mln. € / MWth		0.97			0.91			0.88			
			0.97	-	3.03	0.91	-	3.00	0.88	-	2.93	
Other costs per year	mln. € / MWth		0.23		0.00			0.00				
			0.23	-	0.23	Min	-	Max	Min	-	Max	
Fixed operational costs per year	mln. € / MWth		0.11		0.09			0.08				
(excl. fuel costs)			0.11	-	0.12	0.09	-	0.12	0.08	-	0.12	
	mln. € / MWth				-			-			-	
Variable costs per year			Min	-	Мах	-	-	-	-	-	-	
	the reasons why this dataset pre Therefore, a direct comparison o	sents higher figui f the datasets is r	es. Also, they r not possible.	efer to anaero	oic digestion re	lated CAPEX ar	id OPEX, when	eas SDE+ also ir	ncludes further	processing of	piogas.	
ENERGY IN- AND OUTPUTS						1			1			
Energy carriers (per unit of main output)	Energy carrier	Unit	Curr				2030		2050			
	Main output:	PJ	0.05	-0.95	0.05	0.41	1	-	0.41		-	
	SNG		-0.95	-	-0.95	IVIIN	-	IVIAX	IVIIN	-	IVIAX	
	Biogas (wet streams) Electricity	PJ	1.00	1.00	1.00	0.41	1	-	0.41		-	
			1.00		1.00	iviin	-	IVIAX	iviin	-	IVIAX	
		PJ	0.08	0.08	0.08	0.dim		-	0.4im		-	
			0.08	-	0.08	IVIIII	-	IVIUX	IVIIII	-	IVIUX	
			Min	_	-	Min	_	-	Min	_	- May	
											IVIUX	
Energy in- and Outputs explanation	the wet stream is mentioned abo	ove as input to the	e membrane re	actor where it	will be upgrade	ed to the natura	al gas quality (so called synthe	etic natural gas	or SNG).		

MATERIAL FLOWS (OPTIONAL)													
	Material	Unit	Current 0.80			2030			2050				
Material flows	Discolution	% dry							-				
	Digestate	(volume)	0.80	-	0.80	Min	-	Max	Min	-	Max		
					-		-	-		-	-		
			Min	-	Max	Min	-	Max	Min	-	Max		
	The volume of digestate will be around 90-95% of what was fed into the digester. Digestate can be:												
	1) Composted in case the input stream consists of GFT (vegetables, fruit and garden waste) and sold to be used on agricultural land when it complies with the conditions of the												
Material flows explanation	Fertilizer Act. To be classified a	Fertilizer Act. To be classified as compost it should include no animal manure.											
	2) Further treated in case the v	2) Further treated in case the waste stream is organic waste. The digestate treatment mainly consists of dewatering, drying and storage. The dried product can further be pelletized											
	and become suitable as fuel (fo	and become suitable as fuel (for instance for co-firing plant). An indicative price for this fuel can be around 35 Euro/ton.											
EMISSIONS (Non-fuel/energy-relate	d emissions or emissions reductior	ns (e.g. CCS)											
	Substance	Unit	Current			2030			2050				
Emissions					-			-			-		
			Min	-	Max	Min	-	Max	Min	-	Max		
				T	-		-	-		1	-		
			Min	-	Max	Min	-	Max	Min	-	Max		
					-			-			-		
			Min	-	Max	Min	-	Max	Min	-	Max		
			0.41		-	0.41		-	0.41		-		
Emissions overlapation			IVIIN	-	IVIAX	IVIIN	-	IVIAX	IVIIN	-	IVIAX		
REFERENCES AND SOURCES													
SDE+ Eindadvies, 2019.	No. J. J. M. M. J. Market and M. M.		•			• NI - 1 - 1		1. h 11. h			20.2		
DNV GL, 2017. Biomassapotentieei in	i Nederland. Verkennende studie na	aar vrij beschikbaar b	nomassapoter		rgieopwerking	in Nederland.	Paula Schulze,	Jonan Hoistein,	Harm Viap. GC	LS.17.R.100326	29.2		
Elborson et al. 2015 Diamass nation	in the Notherlands (as part of th	o Piomass Delicios a	cialectories (ad by the Eur	union.	ion)							
Eibersen et al., 2015. Biomass potent	ial in the Netherianus (as part of th	e biomass Policies pl	ojeci, co-iuna	ed by the cure	pean commiss	ion).							